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TOM TAT

Bai bao nghién ctu tinh 6n dinh ctia anh xa da tri chinh quy* Milyutin bi nhiéu bdi mot 4nh xa Lipschitz
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ABSTRACT

The paper investigates the stability of a star Milyutin regular set-valued mapping perturbed by a Lipschitz
mapping in the context of the concepts of Milyutin regularity and star Milyutin regularity that have been

adapted to be suitable for some practical situations.

Keywords: Metric reqularity, star metric reqularity, strong slope, perturbation stability, star pseudo-Lipschitz.

1. INTRODUCTION

First discovered from classical results: Lyusternik-
Graves Theorem, which is formed from two
independent results by L. A. Lyusternik and L.
M. Graves, Open Mapping Theorem by Rudin,
and Implicit Function Theorem by Cauchy, Dini,...
until now, the local metric regularity for single-
valued mappings has been studied and expanded
by many mathematicians such as: Borwein, Ioffe,
Penot, Frankowska, Aubin,... to set-valued map-
pings in nonlinear case of high order or in non-

1 2

local forms in works by Arutyunov,” Gfrerer,

Frankowska and Quicampoix,® Mordukhovich and
Ouyang,* Penot,” Ioffe,%7 Ngai, Tron, and Théra,?
Ivanov and Zlateva,? etc. In the most recent paper
by Tron, Han, and Ngai,'® models of nonlocal
metric regularity of multivalued mappings are
considered on an arbitrary subset of product metric
space. And then, the infinitesimal characterization
for these models as well as the stability of Milyutin
regular under perturbation are also established.

*Corresponding author.
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Besides, in the process of expansion of Aubin
property to the fixed set situation, Ioffe® led to a
weak version of metric regularity which is called star
metric reqularity. Recall that star metric regularity
of a set-valued mapping on fixed subsets of the form
U x V is the metric regularity of the mapping whose
images are the ones of the original set-valued map-
ping truncated by V), i.e., a set-valued mapping T’
between metric spaces is said to be star metric reg-
ularity on U x V if there exists 7 > 0 such that

d(u, T (v)) < 7d(v, T(u) N V),

for all (u,v) e U xV and 0 < 7d(v,T(u)NV) < d(u),
where § is a gauge function that takes positive val-
ues on Y. In the researching, Ioffe has shown that
there exist set-valued mappings that satisfy star met-
ric regularity but are not metric regularity. And so,
star metric regularity is claimed to be weaker than
metric regularity. Then, for the such mappings, the
use of the Milyutin perturbation theorems as men-
tioned in'® with the metric regularity assumption of
the original set-valued mapping may not useful. Con-
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sequently, the purpose of this article is to consider the
stability of Milyutin regular when the initial mapping

just satisfies star Milyutin regularity.

The paper is organized as follows. In Section 2
we introduce some basic notations and preliminar-
ies. Further we recall the related results by Tron,
Han and Ngai.'? In Section 3 we prove stability theo-
rems of perturbed star Milyutin regularity set-valued

mappings.

2. PRELIMINARIES

Throughout the article, we shall mainly be working
in the setting of a metric space X, endowded with
a metric d. For u € X, we denote by d(u, A) the
distance from u to A C X, d(u, A) := inf{d(u,t) |
t € A}. By B(C,p), B(C, p) we denote respectively
an open and a closed neighborhood of C' with ra-
dius p € (0,400). A set-valued mapping (or a mul-
tifunction) between metric spaces X,Y denoted by
T : X = Y is a correspondence which associates
every u a set T(u), possibly empty. For every set-
valued mapping T : X = Y, we associate two
sets, the graph of T and the domain of T, are de-
fined by GraphT := {(u,v) € X xY | v € F(u)}
and Dom T := {u € X | T(u) # 0}. The inverse
of T is the mapping 77! : Y = X defined by
T 1(v) ={u€ X |ve F(u)}. Then,

(u,v) € Graph T <= (v,u) € Graph T~
2.1. Some basic notations and notions

In view of variational analysis, stability theory is
closely related to the basic notion of metric regu-
larity, The versions of this key property are recalled
below, and for more details and further references

readers refer to the works.!!-12

Let X,Y be metric spaces, T': X = Y be a
multifunction, (@,?) € GraphT.

Definition 1. 12 A multifunction T is called met-
rically regular around (u,v) € GraphT with modulus
k > 0 if there exists a neighborhood U x V' of (u,0)
such that

d(u, T~ (v)) < kd(v, T(u)), for all (u,v) €U x V.
We denoted by reg T(@,v) the infimum of all modu-

lus Kk above.

Toffe!' suggested a nonlocal regularity model
of set-valued mapping T : X = Y associated to a
gauge function v as follows. Let Y C X,V C Y and
v: X = RU{400} be positive on U.

Definition 2. %'2 A maultifunction T : X = Y is
called ~y-metrically reqular on U XV if there is a real

number k > 0 such that
d(u, T~ (v)) < kd(v, T(u)), (2.1)

provided that w € U, v € V, and 0 < kd(v,T(u)) <
Y(u). Denote by reg. T(U[V) the lower bound of
the k satisfying (2.1). If no such k exists, set
reg., T(U|V) = cc.

Furthermore, in the work'® by Tron, Han and
Ngai, a different version of y-metric regularity which
is extended to an arbitrary set W C X XY suggested

as follows.

Definition 3. '0 Let T : X = Y be a multifunction
and W be a subset of X xY . T is called v-metrically
reqular on W with constant k if there is a real number
r >0 such that

d(u, T (v)) < kd(v, T(u)), (2.2)

for all (u,v) € W with 0 < rd(v,T(u)) < v(u). The
lower bound reg ., T(W) of k in (2.3) is the modulus
of v-metric reqularity of T on W. If no such k exists,
set reg . T(W) = oc.

The above definition covers the case where the
parameters x and r coincide, which is known as the
concept of y-metric regularity in the sense of Ioffe,

as shown in the following definition.

Definition 4. 10 Let X, Y be metric spaces, W be a
subset of X xY and let T : X =Y be a set-valued
mapping. T is called ~y-metrically reqular on W if
there is k > 0 such that

d(u, T~ (v)) < kd(v, T(u))
for all (u,v) € W with 0 < rd(v, T(u)) < y(u).

Next, we recall a weaker version of metric regu-
larity, star metric regularity, introduced by Ioffe in
also.%
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Definition 5. ¢ Set T\, (u) = T(u)NV. A multifunc-
tion T is said to be y-reqular® (or star vy-regular) on
U XV if Ty is y-reqular on U x V. Specifically, T is
called ~y-reqular™ on U x V if there is a k > 0 such
that

d(u, T~ (v)) < kd(v, T(u) NV)
foralluelU,veV and 0 < kd(v,T(u)NV) < y(u).

In order to be convenient in some applications,
in this paper, we propose an improved version of the
above definition in which the parameters “£” in the
regularity inequality and the gauge condition could
be distinguished.

Definition 6. A multifunction T : X =Y is called
v-metrically reqular® onU XV C X XY with constant
k if there is a real number r > 0 such that

d(u, T (v)) < kd(v, T(u) N V), (2.3)

Jor all (u,v) € UXV with 0 < rd(v, T(u)NV) < y(u).
The lower bound reg” T(U[V) of & in (2.3) is the
modulus of v-metric reqularity” of T onU x V. If no

such k exists, set reg T(U[V) = oc.

Remark 7. In case of r = k, Definition 6 leads to
the version of y-metric reqularity* on U x V in the

sense of Ioffe as in Definition 5.

~v-openness® and ~-pseudo-Lipschitz* of set-
valued mappings are equivalent properties of the reg-

ularity* stated as follows.

Definition 8. A multifunction T : X = Y is -
open® on U X V with constant k if there is a real

number p > 0 such that
B(T(u)NV,pt)NV C T(Blu, s 'pt)),  (2.4)

whenever u € U, 0 < t < y(u). The upper bound
sur T(U|V) of k in (2.4) is the modulus of ~-
surjection™ of T on U X V. If no such k exists, set
sur’, T(U|V) = 0.

Definition 9. A multifunction T~ :Y = X is -
pseudo-Lipschitz* on V X U with constant k if there

is a real number p > 0 such that

A, T (v)) < wdl(v, w), (25)
provided that v € T~ (w) NU, v,w € V and 0 <
pd(v,w) < ~(z). The lower bound lip} T~'(U[V) of

https://doi.org/10.52111/qnjs.2024.18306

K in (2.5) is the y-pseudo-Lipschitz* modulus of T—*
on VxU. If no such & exists, set lip) T~ (U x V)
= 0.

The following propositon shows the equivalence

of the above three star regular concepts.

Proposition 10. Let T : X =Y be set-valued map-
ping and U C X,V C Y. The following statements
are equivalent:

(i) T isy-open* onU xV with modulus not smaller
1.

than K™,

(ii) T is y-reqular® on U x V with modulus not
greater than k;

(iii) T~1 is y-pseudo-Lipschitz* on V xU with mod-

ulus not greater than k.

Proof. To show (i) = (ii), let (u,v) € U x V
be with 0 < pd(v, T(u) NV) < (u). Then, for all
e > 0, take 7 = p(d(v,T(u) N'V) + €) such that
0 < pd(v,T(u)NV) <7 < 7(u). Then, u € U,0 <
7 <7(u) and v € B(T(u)NV,p~tr)NV. By (i), v €
T(B(u,kp~'7)). So, there exists z € B(u,rp~'7)
such that v € T(2). It follows that d(u,T~1(v)) <
d(u,2) < kp~ 7 = Kk(d(v,T(u) NV) +¢€). Let € | 0,
one gets d(u, T~(v)) < kd(v, T(u) N V).

The implication (ii) = (i) is obvious. For
(iti) = (1). Let w € U, 0 < 7 < ~v(u), and let
v € B(T(u)NV,p~tr)NV. Then u € U and there
exists w € T(u) NV such that 0 < d(v,w) < p~17. It
follows u € T~ (w)NU, v,w € V and 0 < pd(v,w) <
7 < v(u). By (i), d(u, T~1(v)) < kd(v,w) < kp~ 7.
This means that there is z € T !(v) such that
d(u,z) < kp~'7, that is v € T(B(u, kp~17)). So,

B(T(u)nV,p~'1)nV C T(B(u,kp~'7)).
The proof is complete.
2.2. Auxiliary results

Now, we recall the concept of (strong) slope which is
considered as an infinitesimal tool in metric spaces,
first introduced in 1980 by De Giorgi, Marino, and

Tosques. '

Definition 11. > Let X be a metric space and
f: X = RU{+oo} be a given function. The symbol
[f(2)]+ stands for max(f(z),0) and Dom f:={x €
X | f(z) < +o0} denotes the domain of f.
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(i) The quantity defined by |V f|(z) =0 if x is a

local minimum of f; otherwise

: f(@) = f(u)
Vf|(z) = limsu .
IV£I(z) Hmsup =)
is called the local slope of the function f at
x € Dom f.

(ii) The quantity

ITf|(2) = sup —————"—
uts d(z,u)
is called the nonlocal slope of the function f at
x € Dom f.

For x ¢ Dom f, we set |Vf|(z) = [Tf|(z) = +oc0.
Obviously, |V f|(z) < |T'f|(x) for all x € X.

In case of X being a normed space and f being
Fréchet differentiable function at z then the slope of
f coincides with the norm of the derivative Vf at
the point. For a fuller treatment of strong slope, we

refer the reader to the researches.!?:15-18

To establish infinitesimal characterizations for
regularity, an effective tool that has been used is the
lower semicontinuous envelop of the distance func-
tion associated to a set-valued mapping T : X = YV
defined by
<p§(w) = (ulir)n_}(r;fy) d(v,T(u)) = lizanjilf d(y, T (u))-
The following theorem established by Tron, Han,
Ngai'® gives the necessary/ sufficient conditions for
the metric regularity via nonlocal slope of the func-
tion cpg. Now, let be given a subset W of X x Y,
we associate every v € Y to set W, = {u € X :
(u,v) € W}, and every u € X toset W, ={veY:
(u,v) € W}. Then, denoted by PxW := U,ey W,
and PyW := UucxW,. In particular, in the case
where the form of W is a box U x V, the sets W,
(with v € V), PxW are identical to U and the sets
W, (with u € U), PyW are identical to V.

Theorem 12. (Tron-Han-Ngail®) Given X is a
complete metric space, Y is a metric space and W C
X xY is a nonempty subset. Let T : X = Y be a
closed set-valued mapping and v : X — Ry U {+o0}
be a gauge function. Then,

(1) Suppose that ~y is lower semicontinuous. If W
1s open and T is y-metrically reqular on W
with constant k, i.e., there exists a real r > 0
such that for every (z,y) € W, with 0 <

rd(y, T(z)) < (),
d(z, T~ (y)) < kd(y,T(z)),

then for each (x,y) € W, with 0 < rgog(:r) <

v(x), one has
Dy |(2) > K71

(ii) Conversely, assume further that v : X — Ry is
a Lipschitz continuous function with constant

1. If there are a positive real K such that

%1&1 inf{|Co) |(z) : d(z,W,) < 07(x), y € Py W,

0< @Z(a?) < dy(z)} >kt

then T is y-metrically reqular on W with con-
stant K.

Regarding Definition 4, the theorem below in the
work by Tron, Han, Ngai'® gives a suficient condition

for the ~-metric regularity via the nonlocal slope.

Theorem 13. (Tron-Han-Ngai'®) Let X be a com-
plete metric space and Y be a metric space, W C
X XY be a nonempty subset. Let T : X =Y be a
closed set-valued mapping. Suppose that v : X — R,
is a Lipschitz function with constant 1. If there exists
k >0 such that

Loy l(2) > w77,
Ve € Wy)y,y € PW,0 < ki (z) < 7(z), where
(Wy)y = Uzew, B(x,7(x)), then one has
d(z, T} (y)) < kd(y, T(x)),
for all (z,y) € W with 0 < kd(y, T(z)) < v(z).
3. PERTURBATION STABILITY OF

STAR MILYUTIN REGULARITY MULTI-
FUNCTIONS

Let X,Y be metric spaces and WV be a nonempty
subset of X x Y. Firstly, we recall the defintiton of
Milyutin regular on W given by Tron, Han and Ngai
in the research.!?
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Definition 14. (Tron-Han-Ngai*®) A multifunction
T: X =Y is called Milyutin regular on W with

constant k if there is a real number r > 0 such that
AT~ (y)) < wd(y,T(z)),

for all (x,y) € W with 0 < rd(y, T(z)) < mpyw(z).
The infimum of all above k denoted by reg,, T(W).

Next, we consider the definitions of Milyutin
regular® associated to the gauge function v =
Mpyw X — Ry defined by mpyw(z) =
d(z, X\PxW).

Definition 15. A multifunctionT : X =Y is called
Milyutin reqular® on W with constant k if there is a

real number r > 0 such that
d(T~(y)) < wd(y,T(z) N PxW),

for all (z,y) € W with 0 < rd(y,T(x) N PxW) <
mpyw(x). The infimum of all above k denoted by
reg = T(W) is the modulus of Milyutin regular® of T
on W. If the above constant k does not exists, set
reg’ T(W) = .

Remark 16. In the above definition, taking r = k
one obtains the definition of Milyutin reqular® on W
in the sense of Ioffe.

It is easily seen that mp,yy(z) is positive on
PxW if and only if PxW is an open set, which fol-
lows from W is open. And then, the results of Theo-
rem 12 and Theorem 13 are also applied to the func-
tion mp,yy due to Lipschitz property with constant

1 of this one.

In this part, we shall investigate the stability of
Milyutin regular under perturbation by single-valued
mappings and the original set-valued mapping is as-

sumed to be Milyutin regular®.

Theorem 17. Let X be a complete metric space and
Y be a Banach space. Let U C X,V C Y be open
sets. Let a closed set-valued mapping T : X = Y
and a single-valued mapping h + X — Y be Lips-
chitz on U with constant A € (0,57 1). If T is Mi-
lyutin reqular® on U x V with constant K, i.e, there
exists v > 0 such that for all (x,y) € U x V with
0<rd(y, T(x)NV) < my(z),

d(z, T~} (y)) < kd(y, T(z) N V).

https://doi.org/10.52111/qnjs.2024.18306

Then, for every n > 0, T + h is Milyutin regular on
WA with reg (T + h) (W) < (k=1 = X\)~L, where

WA = {(z,y) € X xY | z €U,
B(y - h(l’), A777’1?/{(30)) C V}
Proof. Let 1 > 0 be given. According to Theorem

12, we only need to prove that

léiﬁ} inf{|F<,9;‘/F+h|(:r) : d(x,W?;\”) < OMpy (),

y € PyWM 0 < <p5+h(a:) < dmp oy (@)} >K71 = A
(3.1)

)
Indeed, choose ¢ such that 1

5 < min{l,n}, 0 <

(A +1)d

rd <1, s

< M.

Let (z,5y) € X x Y such that d(z, W)") <

dmpwan(x), y € PxWM and 0 < ol t'(z) <

Smpyyrn (). Then there exists u € WA such that
d(x,u) < dmpyyan(x) < dmy(x).

So, u € U, B(y — h(u), \pmy(x)) C V, and since mus
is Lipschitz with constant 1, it follows that

d(z,u) < omy(u) + dd(z,u).

By the choice of d, one has

d(z,u) < %mu(u) < my(u) (3.2)

which gives x € U.
Let now {u,} C X be such that u,, — = and
d(y7 (T + h)(un)) — @Z+h(l’) as n — oQ.

Thus, there exists ng € N such that for all n > ny,

0 <d(y, (T +h)(un)) < dmy(un)  (3.3)

and, as u, — = € U, we have u, € U due to the
openness of Y. And then, by the choice of § when n

is sufficiently large, we have
0 <d(y, (T+h)(un)) <r~'my(un).  (34)

Furthermore, for n large enough, we find that
A(Yn, T(uy)) = d(yn, T(uy) NV). Indeed, fixing n €
N*, we take a sequence {ay} C T'(uy) such that

d(y — h(uy),ar) = d(y — h(uy), T(uy,)), k = oc.
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By (3.2), (3.3) and the continuity of distance func-
tion, we conclude that

d(y - h(un)7 ak) < 5mu(un)
< §m1,{(u) + (Sd(una u)
52

1-4§

< dmy(u) + (3:5)

d

my(u)

From (3.2), (3.5) and the choice of 0, it follows that
for n > nyg,

d(akay h( )) d(akay h( ))

+d(y = h(un),y = h(u))

which gives ap € By — h(u), \gmy(u)) C V,
and thus ap € T(uy,) NV
h(up),ar) > d(y — h(uy), T(u,) N'V), So, d(y —
h(un), T(un)) < d(y — huy), (u") NV). And then,
d(y = h(un), T(un)) = d(y = h(uy), T (un) NV) when

n is sufficiently large.

. Consequently, d(y —

Then from (3.4), we see that

0 < d(y — h(u), T(us) NV) = d(y — h(u), T(un))

<ty (uy).

Moreover, by (3.2), for n is large enough, we conclude

from the continuity of distance function that
d(y — h(uy),y — h(u)) < Ad(un,uw) < Nd(z,u)
)
< Anmy(u),

where the last inequality is followed from the choice

of 9. Consequently,

y — h(u,) € By — h(u), \gpmy(u)) C V.

Then from the fact that T is Milyutin regular® on

U x V with constant k, we obtain

d(un, Tﬁl(y = h(un))) < kd(y — h(un), T(un) NV)
= d(y — h(un), T(

un)), Yn > ng.

Now we choose some z, € T 'y — h(u,)) (ie.,
y — h(u,) € T(z,)) such that

d(un, z,) < (k+n"")d(y = h(un), T(un)).  (3.6)

From (3.3) and the choice of 4, for all n > ng, one
has

d(un.z,) < (K +n"Yomy(un) < my(uy).

This yields z,, € U, and thus from the Lipschitz prop-
erty of h on U, we have

d(h(un), h(zy)) < Ad(tp, ). (3.7)

Since @I*(z) > 0, the closeness of T, and
lim,, 00 u,, = x, we see that liminf,, . d(un, z,) >
0. Note that d(y—h(uy), T(z,)) = 0 since y—h(u,,) €
T(zy), and from (3.6), (3.7), we conclude that

T+h
. @ — 0, T"(2n)
I‘ T+h >1 Y Y
T, ™|(x) > im sup 1)

sty 020 =l (7))
— lim sup d(y — h(un), T(uyn)) — d(y — h(2,), T(2))
n—00 d(tn, 2n)

> lim sup d(y — h(un)7 T(un))
n—00 d(una Zn)

-

—A=r"1o N\

> limsup

n—oo K+ n=1

This finishes the proof.

The next theorem is a version of the above one in
which the definition of Milyutin regular® is replaced
by the definition of Milyutin regular® in the sense of
Toffe.

Theorem 18. Given X is a complete metric space,
Y is a Banach space and Y C X,V C Y are open
sets. Let a closed set-valued mapping T : X =Y and
a single-valued mapping h : X —'Y be Lipschitz on U
Y. If T is Milyutin regular®
on U x V with constant k, i.e, for all (x,y) €U XV

with constant A € (0,5~

with 0 < kd(y, T(x) NV) < my(x),
d(z, T~ (y)) < wd(y, T(x) N V).

Then, T+ h is Milyutin regular on W with reg ,,, (T +

R)YW) < (k71 = N)~L, where

W={(z,y) e X xY | z€l,

By — h(z), (26~ = Nmy(x)) € V}.
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Proof. Set Wy )m := Uuew, B(u, mpyw(u)). Ac-
cording to Theorem 13, now we shall show that
for any @ € Wy)m, y € PyW with 0 < (k71 —

Ny (@) < mpew (),

| F(pg*'h () > K7t =\

Indeed, take (z,y) € X x Y such that z € (Wy)m,
y € PyW with 0 < (k71 =X)L oI™(z) < mpyy(x).
Then, there is v € W, such that
d(z,u) < mpyew(u) < my(u). (3.8)
So, u € U, B(y — h(u), \my/(u)) C V, and = € U.
Now, we take {u,} C X such that u, — = and
d(y, (T +h)(uy,)) = @I *h(z) as n — oo. Thus, there

y
exists ng € N such that for all n > ng,

0 < d(y, (T +h)(up)) < (k7" = Nmpyew(x)

< (k71 = Nmy()

< (k71 = Nmy(uy)  (3.9)
& my (), (3.10)

A

and that u,, € U follows from the openness of U and
U, — x €U.

Furthermore, d(y — h(u,),T(u,)) = d(y —
h(uy), T(uy,) N'V) for n large enough. Indeed, fix-
ing n € N*, we choose a sequence {ay} C T'(u,) such
that d(y—h(uy), ar) = d(y—h(u,), T(uy)), k — occ.
By (3.8), (3.9), and the continuity of the distance

function, we conclude that

d(y — h(un), ar) < (K71 = N)my(un)
< (k7= Nmy(u) + (571 = N)d(up, u))
< (2671 = N)ymy(u),

(3.11)

which yields ay € B(y — h(uy,), (2671 = XN)ymy(u)) C
V, and thus a; € T(u,) NV. Consequently, d(y —
h(up),ar) > d(y — h(uy), T(u,) N'V). So, d(y —
h(un), T(un)) > d(y — h(un), T (un) N V).

This giVGS d(y - h(un)a T(un)) = d(y -
h(uy), T(uy,) N'V) when n is sufficiently large.

Then from (3.10), we see that
0 < d(y = h(un), T(un) N V) = d(y — h(ug), T(un))

< K my(uy).
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Otherwise, by (3.8) and for n large enough, one also
have
d(y = M(un),y — h(u)) < Ad(un,u)
< A(up, ) + Md(z,u)
< Amyy(u)

< (2/(1 — Nmy(u)

which leads to y—h(u,) € B(y—h(u), Amy(u)) C V.

So, due to the Milyutin regularity* of T'on U x V

with constant x, one obtains
d(uanil(y = h(un))) < kd(y — h(un), T(un) NV)

We now choose z, € T~ (y—h(uy,)) (i-e., y—h(u,) €
T(z,)) such that

d(un, z,) < (5 +n"d(y = h(un), T(us) N V)
= (k+n"Yd(y — h(u,), T(u,)) (3.12)
< (k4R my(ug)
< my(uy,),

where the last inequality is obtained when n is large
enough. It follows that z, € U, and thus from the
Lipschitz property of h on U, we have

d(y — h(un),y — h(zn)) < Ad(un, 2n). (3.13)

Since apzurh(x) > 0, the closeness of T, and
lim,, 00 u,, = @, we have liminf, o d(uy,, z,) > 0.
From (3.12), (3.13), and note that y—h(u,) € T(2,),
similar as in the proof of Theorem 17, one concludes
that
| Fap5+h | () > hyrbn—ilip # -
=rT=\

The proof is completed.

4. CONCLUSIONS

This artical suggests the models of star regularity
on an any subset of product metric spaces as well
as established the equivalence of star regular con-
cepts: star openness, star metrically regular and star
pseudo-Lipschitz in the literature. Regarding the star
Milyutin regularity, we have proved that the stabil-
ity of Milyutin regularity under small Lipschitz per-
turbation also attains when the assumption of star
Milyutin regularity is imposed on the original set-

valued mapping.
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TOM TAT

Chiing t6i xét mot bién ngau nhién roi rac X chi nhan céc gia tri nguyén khong am. Ky hiéu mién gi tri ciia
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ABSTRACT

Let us consider a discrete random variable X that takes only non-negative integer values. Let R x

and py (x) denote the range of X and the probability mass function of X, respectively. The aim of this

paper is to provide a transformation method used to transform px (x) into a probability mass function

of a discrete random variable X whose range is R ={k € N: k> minRx}. We obtain a repre-

sentation of the characteristic function of X in terms of the characteristic function of X . Moreover, the

distribution-preserving property of the transformation is shown in some specific cases.

Keywords: Probability mass function, discrete random variable, transformation, characteristic function.

1. INTRODUCTION

In probability theory, a probability distribution is the
mathematical function that gives the probabilities of
occurrence of different possible outcomes for a ran-
dom experiment. It is a mathematical description of
a random phenomenon in terms of its sample space
and the probabilities of events (subsets of the sample
space). > The sample space, often denoted by (), is
the set of all possible outcomes of a random experi-
ment being observed.

In order to classify probability distributions, we
need to define discrete and continuous random vari-
ables. A random variable is a function whose domain
is a sample space ) and whose range (i.e., the set of
values that it can obtain) is a subset of the real num-
bers, R. In other words, a random variable assigns
real numbers to the outcomes in its sample space.

*Corresponding author.
Email: lethanhbinh@gnu.edu.vn

https://doi.org/10.52111/qnjs.2024.18307

Random variables which take on values from a dis-
crete set of numbers (i.e., whose range is either finite
or countably infinite) are called discrete random vari-
able.? Otherwise, a random variable is called contin-
uous if it ranges over a continuous set of numbers
that contains all real numbers between two limits.?
In other words, a continuous random variable is one
that takes an uncountably infinite number of possi-
ble values. For instance, a random variable that rep-
resents the time between two successive arrivals to a
queueing system, or that represents the temperature
in a nuclear reactor, is an example of a continuous
random variable.? It is evident that all random vari-
ables defined on a discrete sample space are discrete.
However, random variables defined on a continuous
sample space may be either discrete or continuous.
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Probability distributions can be categorized into two
main types: discrete and continuous. Discrete distri-
butions deal with the probabilities of specific val-
ues for discrete random variables, while continuous
distributions handle the probabilities of various val-
ues for continuous random variables. Examples of
discrete distributions include the Binomial, Poisson,
and Negative Binomial distributions. We will intro-
duce these distributions and several other discrete
distributions in more detail in Section 3. For con-
tinuous distributions, the most popular example is
the normal distribution. This is also referred to as
the Gaussian distribution. Some important continu-
ous distributions are often used to build models and
to test hypotheses about random variables, such as
the student’s t-distribution, the chi-squared distribu-
tion and the F-distribution.

The key difference between a discrete probabil-
ity distribution and a continuous probability distribu-
tion is that in a discrete distribution we are able to
compute the probability that a random variable can
take on a particular value, therefore the probabilities
of individual values can be tabulated. Discrete ran-
dom variables, or discrete distributions, can be com-
pletely characterized by their probability mass func-
tions. The probability mass function (frequently ab-
breviated to pmyf) for a discrete random variable X,
gives the probability that the value obtained by X on
the outcome of a probability experiment is equal to
(z € R).? In the present paper, we denote it by px (.).
The formal definition of the probability mass func-
tion for a discrete random variable is given in Sec-
tion 2. Sometimes the term discrete density function
is used in place of probability mass function. Since a
continuous random variable takes an uncountably in-
finite number of possible values, the probability that
it is exactly equal to any one of the infinite possi-
ble values is zero. For this reason, the method men-
tioned above to describe a discrete random variable
will not work in the case of a continuous random vari-
able, and then we have to consider the probability of a
continuous random variable taking values in an inter-
val. Continuous random variables, or continuous dis-
tributions, can be completely characterized by their
probability density functions (frequently abbreviated

to pdf’). Because the purpose of this study is to con-
centrate only on discrete distributions, in the article
we will ignore the definitions or concepts associated
with continuous random variables, and we refer the
reader to">* for more details.

The starting point of this paper was to study
the Binomial distribution (denoted by Binom(n, p)).
This distribution has two parameters: the number of
trials , n € N*, and the probability of success for a
single trial, p € (0, 1). The outcome from a random
variable X obeying the Binomial distribution will al-
ways be a nonnegative integer with an upper bound
at n. By the rules of probability, we can attain that the
probability of the event { X = £k} (i.e., the probability
of k successes in n trials) is equal to () p*(1—p)"*.
By definition, the quantity (Z) pF(1 — p)"* is the
value of the probability mass function of X at k,
namely px (k). Then, by chance and by intuition, we

have found the following equality:

2”: _Xk:("P —1) <T;>Pi(1 —p)"" = npg,

which can be shortly rewritten as

n k

YN (w—i)px (i) = 0, (1)

k=0 i=0
where 1 = np and 02 = npq.

At first glance, equality (1) was nothing special.
However, it is worth noticing that the quantities j1 =
np and 0? = npq are the mean and variance of
the Binomial random variable X, respectively. Fur-
thermore, the set {0; 1;...;n} is the range of X (de-
noted by R x). The definitions of the mean and vari-
ance of a discrete random variable are given in Sec-
tion 2. Then, a question naturally arose in our mind:
Whether equality (1) holds true for an arbitrary dis-
crete random variable X whose range is a subset
of the set of natural numbers, if its mean and vari-
ance are finite, or not? Motivated by this question,
we have shown that equality (1) remains true for non-
negative integer-valued random variables satisfying a
certain condition. This result is presented in Lemma
3.2. Combining Lemma 3.2 and Lemma 3.1, we then
obtain the first main theorem (Theorem 3.2), which
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gives a way to transform a probability mass function
of a nonnegative integer-valued random variable to
that of another nonnegative integer-valued random
variable. From this result, we achieve the remaining
important results as shown in Section 3. Up to the
present, there are only a few results on transforma-
tions associated with probability mass functions. For
instance, the pignistic transformation and the plausi-
bility transformation are introduced in the research”.
We briefly recall that these two transformations pro-
vide the ways to transform a basic probability assign-
ment function to a probability mass function. Notice
that a basic probability assignment function (called
also mass function) is not a probability mass func-
tion. For more detail, see”.

The rest of the paper is organized as follows. Sec-
tion 2 revisits key definitions and properties includ-
ing probability mass function, mean, variance, and
characteristic function. Section 3 presents our pri-
mary findings. Finally, Section 4 concludes with re-
marks summarizing the significance of our research
outcomes. This systematic approach aids in under-
standing the framework and contributions of our
study.

2. PRELIMINARIES

2.1. Probability mass function, mean and
variance

From the point of view of understanding the behav-
ior of a discrete random variable, the important thing
is to know the probabilities that the random variable
takes each value in its range. Such probabilities are
described with a probability mass function.

Definition 2.1. * Let X be a discrete random vari-
able. The probability mass function of X, denoted by
px (), is defined as

P(X=z)>0
0 ifl‘¢Rx,

pX(I) ifz e Rx,

px(x)
where R x is the range of X.

Obviously, the range of px(.) is a subset of the
interval [0, 1]. Furthermore, by the rules of probabil-
ity, one can get that the function values add to 1.0

https://doi.org/10.52111/qnjs.2024.18307

when summed over all possible values of the random
variable X. This means that )|, px(z)=1.

Definition 2.2. * Let X be a discrete random vari-
able with Rx = {x}r>0. The expectation or the
mean of the random variable X, denoted by EX, is
the number

EX = Z xpx(x) = Zﬂﬁkpx(xk), (2
k=0

TERx
which is defined when Y, |zx|px (z) < oo. If

the later series diverges, the mean is not defined.

In the case where the mean is defined, its value
does not depend on the order of summation. Essen-
tially, the mean EX denotes a weighted average of
the elements in R x, where the probabilities act as
the weights in the discrete setting.

Definition 2.3. Let X be a discrete random variable
with Rx = {z}r>0, and let A > 0 be a positive
real number (not necessarily integer). The moment of

order \ of X is defined as
Q) = EX/\ = Z(mk))\px(l'k).
k=0

Definition 2.4. * Suppose that the mean and the mo-
ment of order 2 of the discrete random variable X
are finite. The variance of X, denoted by VarX, is
the quantity

VarX = E(X — EX)?

oo
= Z(xk —EX)*px ().
k=0
The variance characterizes the amount of varia-
tion of the random variable from its mean. The fol-
lowing property is commonly useful to compute the
variance.

VarX = EX? — (EX)%

The expectation and variance of a random vari-
able are two of the foremost notions in probability
theory. For basic properties of expectation and

variance, we refer the reader to the studies.!*®

2.2. Characteristic function

In probability theory and mathematical statistics,
characteristic functions always play an outstanding
role by providing a comprehensive way to describe
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and analyze probability distributions. They are par-
ticularly powerful due to their unique properties and

applications in various statistical methodologies.

Definition 2.5. 7 The characteristic function of a dis-

crete random variable X is defined as

o0

px(t) =B(e™) =) e px(m), ()

k=0
where ¢ is any real number and ¢ = y/—1.

Since |e%**| is a bounded and continuous function
for all finite real ¢ and x, the characteristic function
always exists. We recall that any characteristic func-
tion @ x (t) satisfies the following conditions (see the
research’ Theorem 1.1.1):

1. ¢x/(t) is uniformly continuous;
2. SOX(O) = limt_>0 gOX(t) = 1;
3. |ex(t)] <1 for all real numbers ¢.

4. ox(—t) = @x(t), where the horizontal bar

denotes the complex conjugate.

In addition, if the moment of order n exists (where n
is a positive integer) then @ x (t) is n times differen-
tiable for all £, and it is related to the n —th derivative

of the characteristic function by the formula’
@ = (=)' (0). @

So, the existence of some moments of a random
variable ensures the existence of the corresponding
derivatives of the characteristic function. We next in-
troduce the following important result (referred to as
the uniqueness theorem), which shows that a proba-
bility distribution is uniquely determined by its char-
acteristic function.

Proposition 2.1 (Theorem 1.1.2). 7 Two probability
distributions are identical if and only if their charac-
teristic functions are identical.

For more details on properties of characteristic
functions, interested readers could be refer to’ and
the references therein. Thanks to characteristic func-
tions, we arrive at some interesting results as shown

in Subsection 3.3.

3. MAIN RESULTS

Let X be a discrete random variable with the range
Rx C N (the set Ry is either finite or countably
infinite). Throughout the forthcoming, we always as-
sume that the mean and variance of X exist, and are
denoted by . and o2 (o > 0) respectively.

3.1. Formulation of transformation

Lemma 3.1. Let k be a nonnegative integer. If R x
is countably infinite, we then get

k

Y (n—i)px(i) > 0 k > minRx.

=0
If Rx is finite with | R x | greater than 1, we have

k

Z(u—i)px(z’) >0 mnRy <k <maxRx—1.
=0
Proof. 1f Ry is countably infinite, we have that

k

Z(“ —i)px (i) > (p—minRx)px(minRx) > 0

ifmin Ry <k < p(since p > minRx).

For k > p, setting a(i) = (1 — i)px (i), we obtain

k (1] k
D u—ipx(@) =D ali)+ Y ali)
i=0 i=0 i=[u]+1
(1] [eS]
> ) a(i)+ a(i)
1=0 i=[p]+1

o

o

a(i)=p—p=0,

where [.] denotes the floor function. Obviously,
S (= i)px (i) = 0if k < minRx.
If Ry is a finite set (with [Rx| > 1), due to

Zrinj(‘)RX (u—1)px () = 0, we only need to consider

ksuchthatminRyxy <k <maxRx — 1. O
Lemma 3.2. Assume that
lim_ nzo(u —i)px (i) = 0. (5)

Then, setting m = min R x, we have
k

Yo (u—ipx (i) = o®. (6)

k=mi=m
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In the case that Rx is finite, equality (6) becomes
M—-1 k

YOS (u—ipx(i) = 0%, (7)

k=m i=m
where M := max Rx.

Proof. For each positive integer n > m, we have
n k

> (n—i)px (i)

mi=m

K
Z(M —i)px (i) (px(i) =0ifi ¢ Rx)

=0

~
Il

(n+1—1d)(p—i)px(i)

[0 = p)? + (i — 1) + (1= ) (p = )lpx (i)

M- 1 M-

s
Il
<)

n

= Z(z —1)?px (i) + TLZ(M —1)px (i)

=0

n

+ (=) (u—ipx(i). ®)

=0

It is noteworthy that, by the definitions of x and o2,

Y (i—p)px(i) = 0% (u—1i)px(i) =0. (9)
i=0 1=0

Equality (6) readily follows from (5), (8) and (9).

If Ry is a finite set, by the definition of ;1 one
can easily see that ) " (pu—1)px (i) = 0 for every
n > M. Therefore, condition (5) is always true and
we obtain (7). O

Remark 3.1. Lemma 3.2 yields another formula for
the variance of a discrete random variable X if its
range is a subset of the set of natural numbers, pro-
vided that (5) is satisfied. Furthermore, from the
proof of Lemma 3.2, we notice that (5) is a necessary
and sufficient condition for the validity of (6).

Combining Lemma 3.1 with Lemma 3.2, we im-
mediately attain the first main theorem.

Theorem 3.2. Assume that (5) holds and set m =
min R x, M = max R x. Then, there exists a discrete
random variable X such that

https://doi.org/10.52111/qnjs.2024.18307

Ro = {keN:m <k} if Rx is infinite;
* {keN:m<k< M} ifRx isfinite;

and its probability mass function is given by

Ea

_ % > = ipx (i), (10)

Il
3

Jorallk € Ry.

Proof. According to Lemmas 3.1 and 3.2, we have
o0
pg(k)>0(VkeRg) and Y pg(k)=1,
k=m

which imply the statement of Theorem 3.2. O]

Remark 3.3. In other words, Theorem 3.2 or formula
(10) textcolorredprovide a probability transformation
which transforms the probability mass function px (.)
to another probability mass function, p ¢ (.). Also, one
can see that the range of X is always a set containing
consecutive nonnegative intergers, and has the same
minimum value as the one of the initial random vari-
able, Ryx.

Let us now consider the following example to
more understand the use of the transformation.

Example 3.4. Let X be the random variable with the
probability distribution described as follows:

X Ho 4 6 8
px@ | T L 1 1

By direct calculation, using (10) we get

Clearly, ZZ:O py(k) = 1 and the corresponding
probability distribution of X is given as

w
w
w
I B
= Ot
~=| O
Ll N |
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The next example was intended as an attempt to
extend the claim of Theorem 3.2 to the case that X
takes (positive) noninteger values. However, we ob-
tain that the claim is no longer true.

Example 3.5. Let X be the random variable with the

probability distribution given as

X o § 1 § >
px@ | § F 0§ & 3
From (10), we get
19 , 143
F=16 7 ~ 2567
px()—%;
pe(l)= oo
We obtain
px(0) +px(1) = #

Hence, equality (6) does not hold.

3.2. The characteristic function ¢ ;(.)

As mentioned in Section 1, it will be very useful to
obtain an expression for the characteristic function
of X. By Proposition 2.1, the fact that every distribu-
tion is uniquely determined by its characteristic func-
tion allows us to be able to determine the distribution
type of X, without having to find the mass probabil-

ity function p ¢ (.).
Theorem 3.6. With the settings of Theorem 3.2, the

characteristic function ¢ (.) of the random variable
X is given by

- !

px(t) = o2(1 — eit)

where, as before, 11, 0% and ©x(.) are respectively
the mean, variance and characteristic function of the
random variable X.

Proof. For simplicity of notations, throughout the
proof, p, and py, stand for px (k) and p ¢ (k), respec-
tively. From (10) and by grouping the terms appro-
priately, we attain

J=0 k=j

= % (Sl,n(t> - SQ,n(t)) ) (12)
where

Sinlt) =Y [(i=ps Y] (130

7=0 k=0

n j—1 ‘

Saalt)i= D" [(n =gy Y ™. (130)

j=1 k=0

On the other hand, by definition,

SD)Z(t) = lim Sn(t)v (14)

n—oo

we are thus left with the task of determining the limits
of S1 ., (t) and Sa ,,(t) as n tends to oco.

To find the limit of Sy ,, (¢) defined as (13a), it is
worth pointing out that

0<[Sin(t)] =D e Z —J)p;

IA
S
=
=

From (5) and the Squeeze Theorem, it immediately
follows that
lim S ,(t) =0. (15)

n— 00

In order to arrive at the remaining limit, we first

rewrite S, 2(t), given by (13b), as follows
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n

SQ,n(t):mZ(ﬂ Jpi(1 =€)
=1
1 n
R )
7=0
[ Sy = Y
=0 =0

+3° jpjeitj} . (16)
=0
Letting n tend to oo in the both sides of (16), we get

1 Py (1)
1_€,t{ ppx )+

owing to the following simple equalities,

lim Sy, (t) =

n— 00

| an

o]

Y (n=i)p; =0;

=0
ZP e = px(t

From (12), (14), (15) and (17), the proof of Theorem
3.6 is completed. OJ

Z]p] W= sox( )-

3.3. Distribution-preserving property

The work of this section contains descriptions of
some different well-known discrete distributions used
in probability. By the method of characteristic func-
tions, our aim is to verify whether the random vari-
ables X and X are able to belong to the same family
of distributions (in other words, whether the distribu-
tion family of X can be preserved by the formulated
transformation) for each considered case.

e Binomial distribution

Binomial distributions correspond to random vari-
ables that count the number of successes among n
independent trials having the same probability of suc-
cess. Such trials are called Bernoulli trials. The prob-
abilistic model of Bernoulli trials is applicable in
many situations, where it is reasonable to assume in-
dependence and constant success probability.

Definition 3.1. ® A random variable X is said to
have a Binomial distribution with parameters n and
p(wheren € N*,0 < p <1)if

https://doi.org/10.52111/qnjs.2024.18307

P(X = k)= (Z)p’“(l —p)" Tk (18)

forall k =0,1, ...,

If X ~ B(n,p), the mean and variance are

n . We write X ~ B(n, p).
6

H=np, gzzznp(l——p% 09)

and the characteristic function is given by’

px(t) = (1—p+pe")". (20)
From (19), (20) and (11), we have
px(t)=(1—p+pe)"t, 1)
which immediately implies that
X ~B(n—1,p),
forall n > 2.

e Poisson distribution

Poisson distributions are applied when the random
variables under consideration count the number of
events occurring in a specified time period or a spatial
area, and the observed processes satisfy the primary
conditions of time (or space) homogeneity, indepen-
dent increments, and no memory of the past.

Definition 3.2. 3 A random variable X is said to
have a Poisson distribution with unique parameter
A>0if

7AAk
K
We then write X ~ Pois()).

P(X=k)=" k=0,1,2,.. (22

The mean, variance and characteristic function of
the Poisson distribution are’

p=o% =X 23)
px(t) = expA(e” — 1)]. (24)

First of all, let us prove that assumption (5) is satis-
fied. Indeed, by (22) and (23), we get

n Ak+1 n Ak
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\ LY S S et SV
S PSR I
| |
prt k! P k!
)\n«l»l
:e_)\
n!

As a result, assumption (5) is equivalent to

)\TL

— — 0 as n — oo,

n!
which is true for all A > 0. So, (5) is valid. By The-
orem 3.6, (23) and (24), it is straightforward to find

the expression for ¢ ¢,

px(t) = exp[A(e” —1)] = px(t).
Thus, we have
X ~ Pois(\).
e Negative binomial distribution

The Negative Binomial distribution is a discrete
probability distribution that models the number of
failures in a sequence of independent and identically
distributed Bernoulli trials before a specified num-
ber of successes occurs. In a sequence of independent
Bernoulli trials, each trial has two potential outcomes
called “success” and “failure”. In each trial the prob-
ability of success is p (0 < p < 1) and of failure is
1 — p. One observes this sequence until a number r
of successes occurs, where r is a fixed integer.

Definition 3.3. ®® Let the random variable X denote
the number of observed failures before the 7 suc-
cess occurs. Then

P(X:k:):<k+;;_1

forall k =0,1,2,...

In this case, the random variable X is said to have

)u—m%& (25)

the Negative Binomial distribution with parameters r
and p. We denote by X ~ NB(r, p).

If X ~ NB(r, p), then

/j,:r(lip>,0'2:r(1gp)7 (26)
p b

and its characteristic function is given as’

px(t) = <1(1PW> ,teR. (27)

From (25) and (26), we first remark that

=), (%q - k)clliwflqkpr (g:=1-p)

—ray Y Ok - Ot
k=1

n

=rgp" rp Tt {Z <Cll§+r—1 + Clljﬁig—l)qk+1
k=1
n
k-1 k
- Z Crpr_14 }
k=1

n—1

n

_ qurfl + Tprfl {Z C]I§+qu+1 _ Z C]]§+qu+1}
k=1 k=0

_ Tprilc:ﬁrqwrl-

Due to 0 < ¢ < 1, it is easy to check that

1)...
nCp g = ot )r, R

as n — o0. In other words, (5) holds true.

Accordingly, by Theorem 3.6, we attain the char-

acteristic function of X defined by

s~ ()

which concludes that X ~ NB(r + 1,p).

e Geometric distribution

Consider independent trials such that a certain event
may happen at any given trial with probability p. The
trials continue until the event occurs for the first time.
The number, X, of trials performed before the event

occurs has a geometric distribution. ®

Definition 3.4. © A random variable X is said to have
a geometric distribution with parameter p, where 0 <

p < 1, if its probability mass function is defined by
P(X =k)=(1-p)"p, (28)

forall k = 0,1,2,... We then write X ~ Geo(p).
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From (28), it is easy to see that the geometric dis-
tribution is the special case of the negative binomial

with 7 = 1, namely,

X ~ Geo(p) & X ~ NG(1,p).

As a consequence, we get that X ~ NB(2,r) if
X ~ Geo(p).

e Hypergeometric distribution

The hypergeometric distribution is a discrete proba-
bility distribution that models the probability of ob-
taining a specific number of successes in a sample
drawn without replacement from a finite population
containing two distinct types of elements®? (i.e., a fi-
nite population whose elements can be classified into
two categories one which possesses a certain charac-
teristic and another which does not possess that char-
acteristic). For instance, suppose an urn contains K
white balls and (N — K) black balls. From this, n
balls are drawn without replacement. The probability
that the sample of size n contains k£ white balls and
(n — k) black balls can be obtained by hypergeomet-

ric distribution.

The hypergeometric distribution is characterized
by the following parameters:
- N: The total population size.

- K: The number of elements of Type 1 in the popu-
lation.

- n: The number of draws without replacement (the
sample size).

Definition 3.5. Let NV, K and n be integers such
that N > 1,0 < K < N,and1 < n < N.A
random variable X is said to have a hypergeomet-
ric distribution with parameters (N, K, n), written as
X ~ HG(N, K, n), if the corresponding probability
mass function is given by

pox— = 0D

where k € Z and

max(0,n + K — N) < k < min(n, K).

https://doi.org/10.52111/qnjs.2024.18307

If X ~ HG(N, K, n) , the mean and variance are
K,

B _ K(N—-K)(N —n)
ILL—TLN7O' =N NQ(N—I) )

(30)

and its characteristic function is given by’

(NiK)2F1[_n7 —K;N—K_n_'_l;eit]

‘PX(t) = = (N)
! (31)
where
. abz ala+1)b(b+1) 22
2Fifa,bieiz] =1+ TR c(c+1) ot
(32)

is the Gaussian hypergeometric function.%
By virtue of the fact that

02F1[a,byc;z]  ab

s = —2fifat+1b+ et 152,

we then attain

s anK (N R) s Fia, By et
Prlt) e T 6

where « == —n+ 1,0 := —=K + 1, and 7y :=
N — K — n + 2. Unfortunately, at first we couldn’t
find the explicit expression for ¢ ¢(t) by means of
formula (11) in Theorem 3.6. Therefore, it is difficult
for us to determine the appropriate distribution of the

random variable X.

However, according to the above results and The-
orem 3.2, we have had a reasonable belief that the
random variable X should follow a hypergeometric
distribution and, futhermore, its support set must be
{keZ:max(0,n+ K —N) <k < min(n—1,
K —1)}. For this reason, we aim at proving that

X~HG(N-2,K—-1,n-1), (34

provided that N > 3, K > 1and n > 2.
To do this, we first note that (34) is equivalent to

Where]\Nf::N—Q,f(::K—landﬁ::n—l.

With the aid of the algebraic computation software
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(MAPLE), we could easily verify that the following
identity

ppx (t) + ip'x (t)
px(t) - o2(1 — eit)){

0 (Vt € R),

holds true if p, 02, ox(t), ¢’y (), and p(t) are
given by (30), (31), (33) and (35), respectively.
Hence, assertion (34) is true.

o Logarithmic series distribution

The logarithmic series distribution (also known as the
the log-series distribution) is a discrete probability
distribution derived from the Maclaurin series
expansion:

where 0 < p < 1. From this, we get

i—ipk -1
kzlkln(l—p)

So, it is easy to see that

_pk

f(k) = m, k = 1727 ceey

defines a probability mass function on the set of pos-
itive integers.

Definition 3.6. ® A random variable X is said to have
a logarithmic series distribution with parameter p,
where 0 < p < 1, if its probability mass function
is given as

pk

PX =k) =~

k=1,2,3,... (37)

We then write X ~ LogSeries(p).

The logarithmic series distribution is sometimes
used to model the number of items of a product pur-

chased by a buyer in a specified interval.

If X ~ LogSeries(p), the mean and variance are

given as
P
= - ) (38a)
T ()
24 pln(l —
2o P Aphl-p) (38b)

Besides, its characteristic function is as follows’

ox(t) = s

Letus now show that assumption (5) is satisfied when

39)

X ~ LogSeries(p). For any positive integer n, ac-
cording to (37) and (38a), we derive

n

nY (1 —kpx(k)

k=1
- p
=~ang;pkﬁl—pﬂﬂl—p)+k>
n n k.
ZA@M<mﬂ—m2]ﬁ—p“U+p§:i>
k=1 k=1
=A@m<mu—mw p”5+p2:k>
k=1
= A(p) (=np" ' In(1 = p) + pnB,(p)),  (40)
where
1
A=
Bdm;zmu—4ﬁ+§zga (41b)

Owing to lim,, o, np™*! = 0 for all p € (0,1), it
follows easily from (40) that assumption (5) holds
true if and only if

nlLH;O nB,(p) = 0. 42)
To verify (42), it is worth noting that B,,(p) defined
as (41b) is exactly equal to the Lagrange remainder of
order n (usually denoted by R,,(.)) for the Maclau-
rin series in equation (36). Using the Lagrange re-
mainder formula® applied for the function f(z) =
In(1 4 z) at z = —p, for each n, we then attain

(1) (=p)"*"
(T E) m+1)

n+1
) N CE)

Bu(p) =

_ 1 p
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where &, 1s some number (depending on n) between

—p and 0. Thus, owing to (43), limit (42) is equiva-

» n+1
A <1 + £n> - 9

lent to

which evidently depends on the limit of fgn as n
tends to oo. More specifically, noticing 0 < 1 —p <
1+ &, and setting ¢ := lim,, ﬁ, ifce[0,1)
then (44) is true. If ¢ = 1, the right hand side of (44)
has the indeterminate form 1°°, and hence we haven’t

been able to draw an exact conclusion on (44).
Moreover, from the following estimate
b < b
1+¢, ~ 1—p

we easily achieve that (44) holds true for all p €

0<

(¥n € N¥),

(0,1/2). However, we haven’t yet verified the va-
lidity of (44) (equivalently, that of (42)) in the case
p € [1/2,1). We want to emphasize here that the
claims of Lemma 3.2, Theorem 3.2 and Theorem 3.6
are no longer true if (44) does not hold.

Let p € (0,1/2). By virtue of Theorem 3.6, and
from (38a), (38b), we get the characteristic function

of X given as

q (1 —pe)In(1 — pe') — eqlnq)

(Ing + p)(1 — eit)(1 — pet) ’
(45)

where ¢ := 1 — p. We haven’t determined the prob-

px(t) =

ability distribution family corresponding to the char-
acteristic function defined by (45).

Remark 3.7. By using L’Hospital’s rule, we get that
}i_l;l’(l) pg() = 0forall p € (0,1) (not only for
p € (0,1/2)), where p;(t) is given as (45). This
means that a basic property of characteristic func-
tions (as presented in Section 2) is satisfied for all
values of p. In addition, with the aid of MAPLE, we
have checked by direct calculation that (42) (hence,
so is assumption (5)) remains true for many values
of p in [0.5,1) (such as 0.5, 0.6, 0.65, 0.7, and up
to p = 0.78). Therefore, we can reasonably predict
that if X ~ LogSeries(p), Theorems 3.2 and 3.6 is
then true for every p € (0, 1). We have been trying to

Prove this.

https://doi.org/10.52111/qnjs.2024.18307

4. CONCLUSION

In the present study, we propose a novel transfor-
mation of probability mass functions associated with
nonnegative interger-valued discrete random vari-
ables. We also demonstrate that our proposed trans-
formation preserves some well-known families of
distributions, such as Poisson distribution, Negative
Binomial distribution and Hypergeometric distribu-
tion. In the future, we intend to extend our research in
two directions. The first one is to continue determin-
ing the distribution of the resulting random variable
(f( ) when the initial random variable (X') has another
discrete distrbution, in addition to the distributions
listed in Section 3. This work aims to further verify
the distribution-preserving property of the transfor-
mation. Besides, we would like to discover its useful
applications in various fields. The second direction,
and the more difficult, is to construct an analogous
transformation of probability density functions in the
case of continuous random variables. One of the most
important aims of probability theory is to find trans-
formations which can preserve an initial probability
distribution in some sense. Consequently, such trans-
formations have attracted a great deal of attention.
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TRUONG DAl HOC QUY NHON

Nghién ciu cudng dé chéng cat khéng thoat nuéc
clia dat sét mém khu dan cu Lo Vi, phuong 1,
thanh phd Tuy Héa, tinh Phi Yén bang thi nghiém
nén mét truc nd hong va thi nghiém cét phang

Nguyén Thi Khanh Ngan*

Khoa Ky thudt va Cong nghé, Trieong Dai hoc Quy Nhon, Viét Nam

Ngay nhan bai: 03/10/2023; Ngay swa bai: 21/05/2024;
Ngady nhdn dang: 28/05/2024, Ngay xudt ban:28/06/2024

TOM TAT

Stre khang cat khong thoat nude cia dat sét yéu 1a thong sb quan trong dé thiét ké nén dép, mong nong va
moéng coc. Strc khang cat khong thoat nude ciia dat dugce xac dinh tir thi nghiém trong phong (vi du: nén ba truc,
cét don gian, nén mo truc né hong) va cac thi nghiém tai hién truong (vi du: thi nghiém CPT, thi nghiém cit canh).
Trong nghién ciru nay tac gia sir dung mau dat sét nguyén dang c6 dudong kinh 90 mm thu dugc tai khu dan cu
Lo Voi, phuong 1, thanh phd Tuy Hoa, tinh Phii Yén. Muc dich chinh cta nghién ciru nay 1 dung thi nghiém nén
mot truc nd hong va thi nghiém cét truc tiép dé khao sat gia tri cuong do strc chdng cét cua loai dit sét yéu phan
b6 phé bién dia chét tai khu vuc nay. Sau do, cdc gid tri cudng do cit khong thoat nude (S,) tir thi nghiém nén mot
truc né hong duge so sanh véi cic gia tri (mg suat cat (1) tir thi nghiém cit phang. Két qua cho thay sirc chong cét
khong thoat nude ciia mau thu dugce tir thi nghiém nén mot truc né hong va thi nghiém ciét truc tiép déu c6 két qua
nh6 hon 25 kN/m? va phan tram chénh léch thu dwoc ca hai phuong phap thi nghiém nay 1a khoang 1.2%. Tir d6
danh gia duoc mau dét sét tai khu dan cu Lo Voi, phuong 1, thanh phd Tuy Hoa, tinh Phii Yén 14 loai dét sét yéu
va rat yéu. Vi viy, khi xay dung cong trinh trén nén dit sét nay v6i bé day phan bd twong di 16n thi can tién hanh
xur ly dat yéu.

Keywords: Pdt sét yéu, sirc khdang cdt khéng thodt mede, thi nghiém nén mét truc né héng, thi nghiém cdt triec

tiép.

*Tac gia lién hé chinh.
Email: nguyenthikhanhngan@gqnu.edu.vn
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Research of undrained shear strength of soft clay
in the Lo Voi residential area, ward 1, Tuy Hoa city,
Phu Yen province by unconfined compressive strength
and direct simple shear test

Nguyen Thi Khanh Ngan*
Department of Engineering and Technology, Quy Nhon Univesity, Vietnam

Received: 03/10/2023,; Revised: 21/05/2024;
Accepted: 28/05/2024, Published:28/06/2024

ABSTRACT

The undrained shear strength of soft clays is an important parameter for designing embankments, shallow
foundations, and pile foundations. The undrained shear strength of soil is determined from laboratory tests (i.e.,
triaxial test, direct shear test, unconfined compressive test) and field tests (i.e., CPT tests, vane shear test). In this
study, the author used intact clay samples with a 90 mm diameter collected in the Lo Voi residential area, ward 1,
Tuy Hoa city, Phu Yen province. The main purpose of this study is to use the unconfined compressive test and direct
shear test to investigate the shear strength value of samples. Then, the values of undrained shear strength (S) from
the unconfined compressive strength test were compared with the values of shear stress (t) from the simple shear
test. The results show that the undrained shear strength of the samples obtained from the unconfined compressive
test and the direct shear test are both less than 25 kN/m? and the percentage difference is obtained from both testing
methods about 1.2%. The soft clays in the survey area are classified as soft and very soft. Therefore, buildings are
built on this clay foundation with a relatively large distribution thickness, so it is necessary to treat the soft soil.

Keywords: Soft clays, undrained shear strength, unconfined compressive strength, direct simple shear tests.

1. INTRODUCTION etc. However, the geological characteristics of

In recent years, the Central Coast region has this area are quite complex and quite new. In

been considered one of the regions with a
relatively strong tourism economic development

this geological area, there is almost a young
sedimentary soft layer, whichis widely and deeply

rate, especially Phu Yen province where dense distributed along the coastal route extending

population, political, economic, and cultural to Binh Dinh province. This greatly affects

centers gather. Therefore, localities are making work such as geological surveys, underground

efforts to renovate and upgrade transport design, and underground construction methods.

infrastructure, comnecting road  systems, Most geological engineers of laboratories in the

. . region encounter many difficulties in conducting
railways, airways, houses, offices, apartments,

*Corresponding author.

Email:nguyenthikhanhngan@qnu.edu.vn
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sampling and laboratory testing to determine
physical and mechanical criteria, deformation
characteristics, and shear strength of soft clays.!?

This paper presents a full geotechnical
characterization, and engineering properties of
the soft site in the Lo Voi residential area, ward 1,
Tuy Hoa city, Phu Yen province, which is
located in north Phu Yen province as can be seen
in Figure 1.

The scope of the topographic survey
in the expected survey area is as follows: The
North borders vacant land and current residential
status; the South borders Tran Quang Khai street
and Ong Chu bridge; the East borders Nguyen
Tat Thanh street; the West borders Chua river.

Nl

invﬁng di an

Lo Voi residential area project is a
synchronous technical infrastructure construction
project including a western landslide prevention
embankment, leveling the ground, road system,
rainwater drainage system, sewerage system,
plumbing system and fire protection system,
power supply and lighting system.

The construction engineer used the
undrained shear strength to calculate the bearing
capacity of the foundation, the thickness of the
embankment layer, and the embankment stages
in the basic design phase of leveling work for
the project. Therefore, the undrained shear
strength of the soft clays was determined by
laboratory tests (e.g., triaxial test, direct shear
test, unconfined compressive test).

B CerDebios Hoosl Ty Hos |
O w7 vinhata Déning |
T Priing 1

Figure 1. Map of Lo Voi residential area, ward 1, Tuy Hoa city, Phu Yen province.

2. METHODOLOGY
2.1. Unconfined compressive test (ASTM D2166)

This test method covers the determination of the
unconfined compressive strength of cohesive
soil in the undisturbed, remolded, or compacted
condition, using strain-controlled application of
the axial load.!?

In this test method, unconfined compressive
strength (q,) is taken as the maximum load
attained per unit area or the load per unit area
at 15 % axial strain, whichever is secured first
during the performance of a test. Shear strength
(s,) - for unconfined compressive strength test

specimens, the shear strength is calculated to be

https://doi.org/10.52111/qnjs.2024.18308
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122 of the compressive stress at failure** and is
expressed as'

Su =51

Where s is Shear strength and q is the
compressive stress at failure.

In this study, the compression device
used the Triplex Il advanced as Figure 2.

Figure 2. The Triplex II advanced.
2.2. The direct simple shear test

The direct simple shear test which is an
geotechnical  engineering
determines the shear strength of clays. In this
test, the shear strength is evaluated using the
Mohr-Coulomb failure criteria and is given by
s =c + otan (¢) (2)

experiment  in

Where c is cohesion, ¢ is the normal stress,
and ¢ is the angle of internal friction of the soil.!

In this theory, failure along a plane in a
material occurs by a critical combination of
normal and shear stresses. Consider the stress at
points a, b, and ¢ as shown in Figure 3. The shear
failure along that plane will not appear as point
Abut it occurs if the stresses plot as point B. The
stress plotting as point C cannot exist because a
shear failure had happened before this condition
was reached.

https://doi.org/10.52111/qn;js.2024.18308

Shear stress

Nomal stress
Figure 3. The failure criteria of Mohr-Coulomb.

The shear device uses strain controlled
direct shear apparatus (two speed) which is
made in China as illustrated in Figure 4. The
product parameters of the equipment are stated
in the Table 1.

Table 1. The product parameters of the strain

controlled direct shear apparatus (two speed).

Vertical load 400kPa, 300kPa, 200kPa,
100kPa, 50kPa, 25kPa
Horizontal load 1.2kN
Lever ratio 1:12
Specimen size 30cm?
Power supply 220VAC 50Hz

Figure 4. The two-speed soil shearing machine.

The experimental method is based on
standard TCVN 4199:2012.'2
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2.3. Test specimens

Testing was conducted on six reconstituted
clay specimens with high plasticity. Onsoy clay
samples were retrieved from a depth of 2-6 m
in a test pit in Lo Voi residential area, ward 1,

Tuy Hoa city, Phu Yen province. The samples in

Table 2. The Specifications of the specimens.

the unconfined compressive test were 48 mm in
diameter and 70 mm in height. The samples in the
direct simple shear test were 60 mm in diameter
and 20 mm in height.** The characterizations of
the soft clay samples are listed in Table 1 and
the results of geotechnical characterization are
plotted in Table 2 and Table 3.

Deep Diameter | Height
Sample Described test sample Test
(m) (cm) (cm)

1 182 Soft,' g.ray, sandy lean clay, low | Unconfined compressive test 43 76
plasticity. (ASTM D2166)

) 3.8.4 Soft,. g.ray, lean clay, high Unconfined compressive test 48 76
plasticity, Pasty state. (ASTM D2166)

3 58.6 Soft,' g'ray, lean clay, high Unconfined compressive test 43 76
plasticity, Pasty state. (ASTM D2166)

4 1.8 Soft,.g.ray, sandy lean clay, low | Direct simple shear test (TCVN 60 20
plasticity. 8868:2011)

5 3.8.4 Soft,'g'ray, lean clay, high Direct simple shear test (TCVN 60 20
plasticity, Pasty state. 8868:2011)

6 58.6 Soft,. g.ray, lean clay, high Direct simple shear test (TCVN 60 20
plasticity, Pasty state. 8868:2011)

Table 3. Geotechnical characterization of soft clays

in Lo Voi residential area, ward 1, Tuy Hoa city, Phu Yen

province.
Deep Y Y w w, w, | I €,
Simple
m kN/m* | kN/m? % % %
1 1.8-2 16.09 9.81 63.98 60.6 28.5 32.1 1.11 1.696
2 3.8-4 16.1 9.6 68 54.3 33.6 20.7 1.67 1.828
3 5.8-6 17.2 1.1 54.63 55.1 34.1 21 0.98 1.445

3. RESULTS AND DISCUSSION

The samples in the direct shear test had an
unequal distribution of stress over the shear
surface. Because the impact load on the sample
is the axial load but the shear failure plane is
cut in the horizontal direction. This result is
partly due to the equipment's unstable load
increase speed. This type of stress distribution
results in progressive failure. The failure plane
predetermined by the shear box of the testing
equipment as shown in Figure 5.1+¢

In this unconfined compressive test, axial
stress on the specimen is gradually increased until
the specimen fails. The shear stress is distributed
over the specimens. The failure plane appeared
with a random tilt angle from the center to the
outer edge of the specimen as shown in Figure 6.
This means pure shear only exists at the center
of the specimen.

The values of undrained shear strength of
soft clays in the Lo Voi residential area, ward 1,
Tuy Hoa city, Phu Yen province from the

https://doi.org/10.52111/qnjs.2024.18308

Quy Nhon University Journal of Science, 2024, 18(3), 75-81 | 79



QUY NHON UNIVERSITY
JOURNAL OF

SCIENCE

unconfined compressive test are smaller than
the direct simple shear test. The value difference
ranges from 1.19% to 1.2%.

As can be seen in Figure 5, the value of
the undrained shear strength from the unconfined
compression test varies from 4.6 kN/m? to

20.45 kN/m? and the value of the undrained shear
strength from the direct shear test varies from
5.5 kKN/m? to 24.3 kN/m? as shown in Figure 5.

The shear strength of soft clays increases
gradually with depth in the same soil layer as
shown in Figure 6. 17

,0 5,0 10,0 15,0 20,0

30,0 35,0

>

@ Direct simple shear test

Depth of sample (m)
A

" Unconfined compressive test

Unconfined compressive strength (kPa)

Figure 5. The values of undrained shear strength of soft clays in Lo Voi residential area, ward 1, Tuy Hoa city,
Phu Yen province from unconfined compressive test and direct simple test.

,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0 100,0110,0

N

@ effective vertical stress

Depth of sample (m)
A

[ Unconfined compressive test

Unconfined compressive strength (kPa)

Figure 6. The values of undrained shear strength of soft clays in Lo Voi residential area, ward 1, Tuy Hoa city,

Phu Yen province from unconfined compressive test and effective vertical stress of soil.
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4. CONCLUSIONS

In conclusion, the undrained shear strengths of
123 soft clay samples were determined from
three method tests inclusion: triaxial test (UU),
direct shear test, and vane shear test. These
values were given results of less than 20 kN/m?.

In this study, the value of the unconfined
compression strength q_of very soft clays and
soft clays with similar characteristics as in the
study ranges from 20.45 kN/m? to 24.3 kN/m?
for both the unconfined compressive test and
direct shear test.

In addition, the undrained shear strengths
of clay samples at depths from 2 m to 5 m were
determined from the triaxial test (UU), and a
value is given of 15.3 kN/m?.

The undrained shear strength of soft clay
was determined by the unconfined compression
test shows that it is more suitable for the actual
working conditions of the ground than the
direct shear test and gives approximately to the
published results before.

Designers should use the unconfined
compression test instead of the direct simple
shear test to determine the undrained shear
strength of soft clays for large projects.

However, actual experiments show that
the accuracy of the results test depends largely on
the level of damage to the soil sample due to the
process of sampling, transporting, preserving,
and cutting the sample. In particular, for very
soft clays, laboratory testing is not always
convenient because it is not possible to get intact
samples.

[oNole
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TOM TAT

Chiing t6i trinh bay mot phuong phap tim nghiém liouville ctia phuong trinh vi phan dai sé cip mot
bing phép déi bién. Cu thé, mot phuong trinh vi phan dai s6 cAp mot véi hé s6 thuoc vao mot mé rong
liouville dugc bién déi thanh mot phuong trinh vi phan véi hé sé thudc vao truong vi phan hitu ty bing
phép ddi bién trén truong co sd. Thém nita, sit dung phép déi bién giita cdc ham s6, phuong trinh vi phan
dai s6 cAp mot véi hé s6 trén truong vi phan hitu ty c6 thé duge bién déi vé dang phuong trinh don gian
hon phit hop véi cac thuat toan da biét. Mot s6 vi du duge trinh bay dé minh hoa phuong phap da dua ra.

T khéa: Phuong trinh vi phan dai s6, nghiém liouville, phép doi bién.

*Tac gia lién hé chinh.
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ABSTRACT

We present an approach for finding liouvillian solutions of first-order algebraic ordinary differential
equations (AODEs) by means of change of variables. In particular, a first-order AODE with liouvillian
coefficients can be transformed into an AODE over rational fields by the change of indeterminate over the
ground fields In addition’ by the change of functions7 the last AODE can be converted into the one which

is suitable for known algorithms. Some examples are given to illustrate the method.

Keywords: Algebraic ordinary differential equation, liouvillian solution, change of variables.

1. INTRODUCTION

The ideas of using geometric properties which
satisfy the differential constraint into the prob-
lem of solving differential equations are well-
known. There are notable works for finding
rational general solutions which are based on
rational parametrizations of algebraic curves
of genus zero.'™3 Recently, by this technical
method, we have presented an algorithm for
determining liouvillian solutions of first-order
AODEs of genus zero.

In this paper, we give an approach for
solving first-order AODEs which is based on
the change of variables. This continues the
ideas considered in the previous works.*4~° In
more details, we aim to transform certain first-
order AODEs into sub-types with respect to
the two cases of change of variables, that are
the change of the functions and the change of
the indeterminate over the ground fields. From
these considerations, first-order AODEs with
liouvillian coefficients can be converted into
the AODEs over C(z) (Section 4). Moreover,
such an AODE over C(z) can be transformed
into an autonomous AODE or a rational one
(Section 3) where known algorithms can be
applied. 57

*Corresponding author.
Email: tridat.nguyen@ut.edu.vn

https://doi.org/10.52111/qnjs.2024.18309

2. PRELIMINARIES

We present some necessary definitions which
are well known in literature.®=10

Definition 2.1. Let k be an algebraic field
of characteristic zero. A derivation of the field
k, denote by ’, is an operation of k such that
Ya,b € k, the followings hold.

(a+b) =d +b, (ab) =d'b+ab.

A field k equipped with a derivation ’ is called
a differential field. An element a € k is called
a constant if a’ = 0. A field extension F of
k is called a differential field extension of k if
and only if the derivation of F restricted to k
coincides with the derivation of k.

Definition 2.2. Let E be a differential field
extension of k and let / denote the derivation
on E. t € I is called primitive over k if t' € k.
t € E\O0 is called hyperexponential over k if
t'Jt € k. t € E is called liouvillian over k if ¢
is either algebraic, or primitive or hyperexpo-
nential over k. E is a liouvillian extension of k
if £ = k(ti,ta,...,t,), and there is a tower of
differential fields k = kg C k1 C--- Ck,=F
such that for each i € {1,...,n}, ki = ki—1(t;)
and t; is liouvillian over k;_1.

84 | Quy Nhon University Journal of Science, 2024, 18(3), 83-89



QUY NHON UNIVERSITY

I SCIENCE

Definition 2.3. Let F(y,w) € k[y,w] be an
irreducible polynomial in two variables and K
be the algebraic closure of k. Then we define
an affine algebraic curve over k by the set

L := {(a,b) € A*(K) | F(a,b) =0} .

The polynomial F(y,w) is called the defining
polynomial of L. We may write F(y,w) = 0 to
indicate an algebraic curve L.

Definition 2.4. Let k be a differential field
with a derivation ’ and let F' € k[y, w]. A first-
order algebraic ordinary differential equation
(AODE) is a differential equation of the form

F(Y,Y') = 0. (1)

Then, the equation F'(y,w) = 0 is called the
corresponding algebraic curve of the first-order

AODE (1).

By abuse of notations, when we refer to

d

an AODE (1), we mean k = C(z) with ' = o
z

whose field of constants is C and 2/ = 1.

Definition 2.5. ¢ is called a solution of the
AODE (1) if F(§,¢') = 0. If such & belongs to
a liouvillian extension F of k then we call it
a liouvillian solution. A solution £ is called a

liouwvillian general solution if it does not vanish
oF

oy’

Remark 2.1. A general solution & defined by
the way in Definition 2.5 first introduced in
the work by Hubert,'! and it is tantamount to
the classical one defined in the book of Ritt.®
Moreover, £ is called a singular solution if it
fails to annul Sg. It is well known that an
AODE (1) has only finite singular solutions,
hence, the paper’s method is only applicable
for finding liouvillian general solutions since it
generates infinitely many solutions.

the separant Sp =

3. THE CHANGE OF VARIABLES
u= 1 (Y)

We show how a geometric transformation in-
duces a differential one. Let

G(u,u') =0 (2)
be a first-order AODE and G(u,v) = 0 be its

algebraic corresponding curve over C(z). As
above, let F(y,w) = 0 be the corresponding

algebraic curve of the AODE (1). Assume that
there is a transformation of the form

u = P(y, w),v =7y, w) (3)
such that

G(u,v) = G(Y(y, w),v(y,w)) = F(y,w) = 0.

Then the transformation (3) induces a differen-
tial transformation between such two AODEs

w= (V.Y = (YY) = (Y, Y). (4)

Lemma 3.1. The transformation (4) must be
of the form

u=y(Y),u =4(Y). (5)

Proof. In fact, if the first component of the
transformation (4) contains the term Y’ then
the second component must include Y which
is a contradiction if we compare with (3). [

Remark 3.1. The transformation (5) is based
on the change u = ¥(Y) and it can be started
with any rational function ¢(Y") € C(Y). How-
ever, just simple cases are considered in prac-
tical application. Recently, the change of vari-
ables u = Y™ has been studied in the work
by Dat and Chau. This consideration induces
the one called a power transformation. Such
a transformation may lead to a change of the
genus of algebraic curves, by that, it can be
applied for solving first-order AODEs whose
genera are positive.

In the rest of this section, we consider a
transformation induced by a rational function
u of the form
oY +f

Y 445
where a, 3,7,8 € C(z), a6 — By # 0. A Mébius
transformation is a transformation of the form

oY +5 o, aY + 38\ (6)
Tovyet TGy e )

u=DMY)

The inverse substitution of (6) is
!
Y:M,y’: <M> _ (7)
—Yu + « YU+«

In this part, we follow the work by Ngo and
Ha for the details of M6bius transformations.?
They have been studied for finding algebraic
and rational solutions.*'? Hence, there is no

https://doi.org/10.52111/qnjs.2024.18309
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need to elaborate about them. Our contribu-
tion is to show that Mobius transformations
are also applicable for determining liouvillian
solutions. First, there is an expression for v’

OM(Y)  ad— By
oY (7Y +6)2’

IM(Y) _(/y =~ a)Y?++5'6 - '8
9z (7Y 4 0)?
(@6 —ad’+ By —A'B)Y (g
(7Y +4)? ’
,_du _d(M(Y))
v dz ~ dz
COM(Y),,  OM(Y)
Y Y+ 0z

Definition 3.1. Let
FY,Y') =) ayY'v9

be an irreducible polynomial over C(z). Then
we define the differential total degree of F' by

p(F) =max{i+2j | 0# a;; € C(2)}.

Putting (6) into an AODE (2) and using
(8), we obtain

n_ aY +8 [(aY +8Y\
G(u’u)_G<7Y—|—57<'yY—|—6>>

_ [ab— By wG) o
_<7Y+6) FY.Y') = 0.

(9)

In the reverse, from the formulas (7) and (9),
we have
/
(@ upp (L2220 (L))
—yu+ o \ —YUu + «
= G(u,u') = 0.

(10)
Moreover, in (9) and (10), u(G) = u(F).5

Definition 3.2. Let F(Y,Y’) = 0 (1) and
G(u,u’) = 0 (2) be two first-order AODEs. We
say F is equivalent to G if there is a Mdbius
transformation (6) such that the formula (10)
is satisfied.

Mobius transformations preserve the
genus among the corresponding algebraic
curves since they are birational. Moreover,
They give an equivalence relation among first-
order AODEs and preserve the property of

https://doi.org/10.52111/qnjs.2024.18309

having algebraic solutions of the equivalence
class.* Next, we will prove that Mobius trans-
formations also preserve the property of having
a liouvillian solution of the equivalence class.

Theorem 3.1. Assume that F is equivalent
to G. Then F has a liowvillian solution if and
only if so does G. In the affirmative case, the
correspondence of such solution is one to one.

Proof. The case of having an algebraic gen-
eral solution has been proved by Theorem 2.2.
From formula (10) and since

(=& + a0,

we find that an AODE G = 0 has a liouvillian
transcendental solution ¢ if and only if

_ 06—
Mg = S

-7+«
is a transcendental solution F' = 0. Finally, by
formula (6), the correspondence of liouvillian
solutions between F' and G is one to one. [

Mbobius transformation is used to check
whether a first-order AODE is equivalent to
an autonomous one.? If this is the case, then
there is an algorithm for finding an algebraic
general solution.” From that, an algebraic so-
lution of the original AODE can be returned.
Based on Theorem 3.1, we aim to apply Md&bius
transformations for determining liouvillian so-
lutions. The following example, see Section 3,
illustrates our idea.

Example 3.1. Consider first-order AODE
F(Y,Y') == 2373 + 22V — 22272 a1
+22YY' — 2V +Y? = 0.

u —

1
Putting ¥ = into the AODE (11)

and using formula (10), we obtain

Ap <u—1’(u—1)/) _

z z

(12)

Gu, ') =u? —u® +u® =0.

By Algorithm 4.1,% a liouvillian solution of the
AODE (12) is
(expi(z+c)+1)*u—2expi(z+c) =0, 2= —1.

Therefore, a liouvillian general solution of the
AODE (11) is

(expi(z+¢)+1)%(2Y +1) —2expi(z +¢) = 0.
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4.THE CHANGE OF VARIABLES
z= o)

This section studies some cases of differential
transformations induced by change of variables
over the ground fields. Let k& = C(z) with

d
I = o and let F be a liouvillian extension

T
of k. Consider the differential equation

F(y,y') =0, (13)
where y is a function of z and F € Ely,w),
i.e. a first-order AODE with the coefficients in
a liouvillian extension E of C(x). For briefly,
we call it an AODE with liouvillian coefficients
(see Definition 2.4).

The issue of considering a differential
equation with coefficients in an extension field
is quite naturally. A general investigation for
determining liouvillian solutions of a linear dif-
ferential equation with liouvillian coefficients
can be found in Singer.!® In this section, our
purpose is to consider some simple cases which
convert an AODE (13) into an AODE (1) by
means of change of variables z = p(z).

Definition 4.1. (Definition 2.7)'* Let E be a
liouvillian extension over C(z) and z € E'\ C,
then z is called a rational liouvillian element

dz
if — .
over C i I € C(2)

Example 4.1. The element z = \/x ++/z + 1
is a rational liouvillian element over C since z
is algebraic over C(z) and

dz 1 1
e 2\/5+2\/m€(C(\/5+\/m+1).
Since Algorithm 1 is independent of the
particular form of the indeterminate z, then
z can be seen as a rational liouvillian element
over C. Hence, this algorithm can be extended
to the case of solving first-order AODEs (13)
by a change of variable. Assume that there is
a change of variable

z = (), (14)
such that it turns an AODE (13) into (1), i.e.

F(y,y)=F(Y,Y'") =0.

If this occurs and Y (z) is a liouvillian solution
of the AODE (1), then

y(z) =Y o p(x)
is a liouvillian solution of the AODE (13).

Remark 4.1.dWe remind the t(xlzvo differential
fields <(C(z),dz> and <(C(:1:),dx> with their
derivatives 3’ and Y’ whose defined as follows

dy dY
=y 2
Y dx dz
By the chain rule, a relation between ' and Y’
is expressed as

4

dYop) _dYdp _dYde _,d

dr  de  dpdr dzdr = dr

The above expression may be applied to detect
a candidate change of variables (14).

4.1. The AODEs with transcendental
coefficients

In the case of transcendental coefficients, we
refer the readers to some standard works for
reference.®!3 Unfortunately, there is no a full
algorithm to find the change of variable for this
case, and we are going to deal with it in the
future. Here, we just present some examples to
illustrate the change of variables (14) in the
affirmative cases.

Example 4.2. (1463 )'® Consider first-order
AODE

yy? — exp (22) = 0. (15)

The coefficients of the AODE (15) are in
C(expz). By setting z = ¢(z) = expz, then
(15) is converted into an AODE (1)

2YY?-1)=0.

After dividing 2%, we obtain an autonomous
AODE (1-462)%

YY? -1=0, (16)

which has a liouvillian general solution

9
Y =4 1(2—1—0)2.

Therefore, a liouvillian general solution of the
AODE (15) is

9
y=Yop= 13/Z(expx+c)2.
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Example 4.3. (I.387)' Consider first-order
AODE

v+ (y —y)expz = 0. (17)

By setting z = ¢(x) = expx, the AODE (17)
is converted into an AODE

Y22 4Y'22 —Y2=0 (18)
which has a proper parametrization
P(t) = (t°z + tz,1).

By using Algorithm 1, the associated ODE
respect to P(t) is
2

e p———
z(2t +1)

which has only a general solution ensured by
Risch, 6

1
In(t?z) — ;=c

Due to the work by Rosenlicht,'” this solution
is not liouvillian. Therefore, the AODE (17)
has no liouvillian general solution.

4.2. The AODEs with radical coeffi-
cients

In the case of solving an AODE with radical
coefficients, Algorithm 3.5 by Caravantes et al.
can be relied.® Assume that there is a change
of variables

x=r(z) € C(2),

then it leads to the existence of the inverse
substitution (14)
z = @(x).

Since z is algebraic over C(z) and

dz dr . _

e (%) 'eC(z),

then z is a rational liouvillian element over C.
The following example illustrates the ideas.
Example 4.4. Consider the first-order AODE

F(y,y) = — xv/ay® + 42®y? — 2ay°

19
+dzyy — Vay+y* =0 1)

By Algorithm 3.5,° there is a change of
variables z = ¢(z) = y/z, which transforms
the AODE (19) into (11)

https://doi.org/10.52111/qnjs.2024.18309

F(Y,Y') == 28Y3 4 227" - 2:%Y?
+22YY' —2Y +Y? =0.

From Example 3.1, then (19) has a liouvillian
general solution

(expi(va +¢) + 1)*(Vay + 1)
—2expi(vx+c) =0.

Remark 4.2. There are more examples of
transforming first-order AODEs with radical
coefficients into the AODEs (1).° Since all of
the AODEs (1) obtained here are of genus zero,
then they are suitable for Algorithm 1.

5. CONCLUSION

In this paper, we have investigated some ways
to convert a first-order AODE into the one
where known-algorithms exist. In details, first-
order AODEs with liouvillian coefficients can
be transformed into first-order AODEs (1) in
Section 4. Moreover, an AODE (1) may be
converted into an autonomous one by Mobius
transformation in Section 3. In addition, if the
AODEs (1) are of positive genera, the power
transformations (respect to u = Y"™) may be
considered. A full algorithm for determining
liouvillian solutions of first-order AODEs will
challenge us in the future.
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Nghién ctiu danh gia dnh hudng cula cac théng so két cau
dén chat lugng phun nhién liéu trén ddéng co Diesel
Kubota D1703-M-DI
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TOM TAT

Trén co s& nghién ctru 1y thuyét qua trinh cung cap nhién liéu, qué trinh hinh thanh hdn hop trong dong co
Diesel, co so 1y thuyét tinh toan trong phan mém Hydsim, két hop v6i qua trinh khao sat, do dac va phan tich dic
diém két cau hé théng cung cip nhién liéu trén dong co Diesel Kubota D1703-M-DI nhém tac gia di ung dung
phan mém Hydsim dé mo phong qué trinh cung cap nhién liéu dong co Diesel Kubota D1703-M-DI véi diéu kién
moé phong & tai dinh mirc, tai trung binh, khong tai va c6 sy thay doi gia tri cac thong sb két cau: bién dang cam,
ti s6 D/h,, dudng kinh 16 phun, chiéu dai 16 phun, d6 ctmg 16 xo voi phun,... Dya trén két qua md phong thu duoc,
nhém tc gia di phan tich, danh gia két qua mé phong va dua ra cac két luan lién quan vé anh huong ciia cac thong
s6 két cAu dén chit lugng phun nhién liéu trén dong co Diesel Kubota D1703-M-DI, tir d6 dwa ra cac d& xuét cai
tién vé& mit thong sb két cau phu hop hon. Viéc 1am nay ¢ ¥ nghia quan trong trong viéc giam tiéu hao nhién liéu,
giam tiéng 6n, giam ham luong cac chit 6 nhiém trong khi xa dong co.

Tir khéa: M6 phong, hé thong cung cdp nhién liéu djng co Diesel, may cay Kubota L3804VN, bom cao dp tip
trung, voi phun cao ap.

*Tac gia lién hé chinh.
Email: nguyenquochoang@qnu.edu.vn
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ABSTRACT

Based on theoretical research of the fuel supply process, mixture formation process in Diesel engines,
the theoretical basis of calculation in Hydsim software, combined with the process of surveying, measuring, and
analyzing structural characteristics of the fuel supply system on the Kubota D1703-M-DI Diesel engine, the authors
have applied Hydsim software to simulate the fuel supply process of the Kubota D1703-M-DI Diesel engine
under simulated conditions at rated load, average load and no load and with changes in the values of structural
parameters: cam profile, D/h, ratio, nozzle diameter, nozzle length, nozzle spring stiffness spray, etc. Based on
the simulation results obtained, the authors analyzed and evaluated the results and made relevant conclusions
about the influence of structural parameters on the quality of fuel injection in the Kubota D1703-M-DI Diesel
engine, thereby providing suggestions for more suitable structural parameters. This is important in reducing fuel
consumption, noise, and the content of pollutants in engine exhaust.

Keywords: Simulation, Diesel engine fuel supply system, Kubota L3804VN tractor, centralized high-pressure

pump, high-pressure injector.

1. INTRODUCTION and construction sites built and used as the

In the period of industrialization and primary power source for services such as plows,

modernization of the country, especially in cultivators, harrows, water pumps, harvesters,

L . etc.; milling machine, rice screening machine
the current mechanization of rural agriculture, ’ g ’ g ’

. . . . etc.; agricultural vehicles, motorboats, etc.;
internal combustion engines, in general, and

. . . . o small capacity concrete mixer; air compressors
Diesel engines, in particular, are indispensable. pacity ’ P

Diesel engines are widely used today, and they with small and medium capacity, etc.

have advantages such as large capacity, high
efficiency, and cheaper fuel costs than gasoline.
In particular, small-sized Diesel engines, with
a power range of 5 + 40 HP (Horsepower), are
highly economical and meet the needs of users,
so they are increasingly approaching rural life

*Corresponding author.

Email: nguyenquochoang@qnu.edu.vn

https://doi.org/10.52111/qn;js.2024.18310

The number and scale of our country's
engine manufacturers still need to be improved.
They mainly produce small single-cylinder diesel
engines for agriculture and construction. Due to
product price conditions, these engines mostly
use old-style fuel supply systems (high-pressure
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mechanical pumps) to ensure competitiveness
with engines produced in other countries.

Among them, we must mention engines
with capacity from 5 to 25 HP from Vikyno
company, with characteristics of low fuel
consumption, durableuse, and production process
requiring high precision, such as VIKYNO
RV-70, RV-105, RV-125, RV-195, KNDS5B,
D9. These products are used on agricultural
machinery such as plows, generators, milling
machines, water pumps, etc., and are machines
that serve the construction industry favored
by domestic and foreign consumers. Most
of these products are transferred production
technologies under copyright from KUBOTA
(Japan) with an increasing rate of details
localization, from 40% in 1992 to 70 - 80% in
2004 and currently about 90%.

However, these engines have a small
working capacity range, are noisy, and do not
meet consumer needs. The problem is that it is
necessary to quickly research and produce multi-
cylinder engines with a broader power range and
higher efficiency and economy.

To meet consumer needs, agricultural
machinery companies have imported many
products, such as tractors, combine harvesters,
etc., from brands such as KUBOTA, YANGMA,
MITSUBISI, ISUZU, etc. This product has a 3,
and 4-cylinder Diesel engine with a 20 + 40
horsepower capacity. In addition, during engine
operation at high load and high speed, the fuel
injection process is poor, producing much black
smoke due to falling, burning on the expansion
line, and consuming much fuel. When running
at idle speed, the engine design is unstable,
causing environmental pollution and reducing
the engine's economy. One of the reasons is the
poor quality of the fuel injection process.

The problem is that it is necessary to
improve or research new designs of engines in
general and fuel systems of these types of engines,
in particular, to suit the conditions of use in our

country, bringing the highest economic benefit for
users. But calculating, designing, manufacturing,
renovating, installing new things, and doing
experiments are complicated and take much
time. Therefore, researching and exploiting the
application of information technology software
in calculating design, simulating engines in
general, and the process of supplying fuel to
internal combustion engines, in particular, will
help significantly shorten the time for designing,
testing, and optimizing the fuel supply process
of the engine fuel system. This will significantly
reduce design, manufacturing, and testing costs,
thereby reducing product costs.!

Currently, in the world, there appears a lot
of information technology software related to
simulating engines in general and hydrodynamic
processes, in particular, such as KIVA
software is used to calculate and simulate the
thermodynamic process of the engine); PROMO
software (German) is used to calculate the
thermodynamics of the engine's working process
based on CFD (computational Fluit Dynamics)
computational fluid dynamics theory; The
software BOOST, FIRE, HYDSIM, EXCITE,
GLIDE, TYCON, BRICKS from AVL (Austria)
are very powerful toolkits in calculating and
simulating kinetic, dynamic, thermodynamic
processes, hydrodynamics, etc. of structures
and systems in internal combustion engines;
AUTOMATION STUDIO software is used to
estimate and simulate hydraulic and pneumatic
systems; Festo's FluidSIM 5.0 software is used to
calculate and simulate hydraulic and pneumatic
systems; Fluent software is software capable of
modeling cylinder engines, ballistics, turbine
engines and equipment, and multiphase systems;
etc. This software can be used for in-depth
research on engine work cycles and can design
models, test theoretical models, etc. In Vietnam,
this software has just been used in recent
years, so it is currently in the research stage.
In addition to those specialised software, there
are some very commonly used software such as
MATLAB SIMULINK software. The software

https://doi.org/10.52111/qnjs.2024.18310
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can handle most mathematical operations based
on the available command set; moreover, it can
simulate systems in mechanics and electronics.

In short, each software has its advantages
in a specific area. In particular, Hydsim software
is software in the AVL Workspace software suite
of the Republic of Austria, an in-depth software
for calculating and simulating the fuel supply
process of Diesel engines. In addition, Hydsim
software is also suitable for calculating and
simulating the fuel supply process for gasoline
engines and engines using other alternative fuels
such as alcohol, biogas, LPG, etc. The software
has been widely applied in developed countries
and modern automobile companies such as Audi,
Fiat, etc. Several officials, lecturers, students,
and research and application students use the
software in Vietnam.

Therefore, the authors applied Hydsim
software to simulate the fuel supply process of
the Kubota D1703-M-DI Diesel engine based on
simulation conditions with rated load, average
load, and no load and with a change in the value of
structural parameters.>* Based on the simulation
results obtained, the authors will analyze and
evaluate the simulation results and draw relevant
conclusions about the influence of structural
parameters on the quality of fuel injection on the
Kubota Diesel engine D1703-M-DI. From there,
proposals for improvements in more appropriate
structural parameters are made. This is important
in reducing fuel consumption, noise, and the
content of pollutants in engine exhaust gases.'

2. ANALYSIS OF STRUCTURAL
CHARACTERISTICS AND CONSTRUCTION
OF A SIMULATION MODEL OF THE FUEL
SUPPLY SYSTEM OF KUBOTA DIESEL
ENGINE D1703-M-DI

2.1. Analyze structural features
2.1.1. Kubota Diesel Engine D1703-M-DI

The Kubota D1703-M-DI engine is a diesel
engine with a 4-stroke, 3-cylinder, 1-2-3 firing
order, placed vertically, compression ratio of

https://doi.org/10.52111/qn;js.2024.18310

20:1, displacement of 1.647 liters, and maximum
capacity of 22.7 kW power, etc. The engine uses
a unified combustion chamber, has a ®-shaped
piston top cutout, and injects fuel directly onto
the piston top, creating a swirling movement of
the gas flow, optimizing the process. Mix the
mixture, thus reducing up to 50% of PM particles
compared to level 2 of the EPA standard. The
MoS, plating layer on the valve body and
piston reduces noise by 1-2 dBA compared
to a conventional engine. It is manufactured

by the Japanese company Kubota and is used
on tractors, such as L3408VN (Figure 1), in
KUBOTA, Japan. The D1703-M-DI engine
complies with temporary regulations on EPA
(US) tier 4 exhaust standards and EU (European)
stage 3A standards passed in 2012 and has been
recognized by the European market.

Figure 1. KUBOTA L3408VN tractor.

2.1.2. Kubota D1703-M-DI Diesel engine fuel
system

1

Figure 2. Structure diagram of Kubota D1703-M-DI
Diesel engine fuel system. 1. Oil tank, 2. Oil filter,
3. Low-pressure pump, 4. Camshaft, 5. High-pressure
pump, 6. High pressure pipe, 7. Injector, 8. Oil return

pipe, 9. Supply oil pipe.

Kubota D1703-M-DI Diesel engine uses
a Diesel engine fuel system with a 3-cylinder,
in-line (5) centralized high-pressure pump of the
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Bosch “K” Type Mini Pump. Each pump unit
supplies fuel for one machine (Figure 3). Fuel
is injected directly into the combustion chamber
through closed nozzles (7) of the Bosch "P"
Type Hole Nozzle type with five spray holes
(Figure 11). The oil tank is stamped from a steel
plate and has a capacity of 34 liters. Oil filters
use a pleated paper-type filter element, which
increases filtration efficiency and compact
structure. A diaphragm-type low-pressure pump
is located on the side of the engine body and is
driven by the high-pressure pump camshaft.

The low-pressure pump sucks fuel from
the tank through the filter into the pump and
then is pumped to the high-pressure pump.
Filters filter out dirt mixed in fuel. The high-
pressure pump compresses the fuel further into
the high-pressure line and then to the nozzle.
Fuel is injected into the engine combustion
chamber at the end of the compression process.
Then, the injected fuel beam is shredded, heated,
evaporated, and mixed evenly with air to create
a mixture that spontaneously ignites. Excess fuel
in the injector and high-pressure pump passes
through the return valve to the tank.

a. High-pressure pump

The Kubota D1703-M-DI Diesel engine uses
a centralized high-pressure pump with three
machines in line and a fuel supply order 1-2-3.
The removable camshaft is installed in the
engine body. The high-pressure pump consists
of 3 pump groups. Each pump group includes a
pair of high-pressure pump piston-cylinders. The
control of changing the amount of fuel supplied
for each cycle is thanks to the oblique groove on
the piston, which is controlled to rotate by the
rack and pinion mechanism. The unique feature
of'this type of pump is adjusting the fuel quantity
between pump units; we change it by rotating the
adjustment tube (6) back or forth.

* Structure (Figure 3): This is a high-pressure
pump that adjusts the amount of fuel supplied
to the cycle with a piston valve, changing the
amount of the fuel provided by changing the

proper stroke of the piston. The main details of
the high-pressure pump are the pair of pistons
(15) and cylinders (16). This is a super precise
pair requiring very high precision manufacturing.
It has been chosen to be installed together, and
when replaced, the entire pair must be replaced.
The cylinder is inserted into the hole in the
adjusting tube body, positioned by the pin on the
adjusting tube (6). The space inside the cylinder
is connected to the fuel chamber in the pump
body by a port and to the high-pressure fuel line
when the high-pressure valve is open.

@ (b)

Figure 3. Structure of high-pressure pump of Kubota
D1703-M-DI Diesel engine. (a) Actual image of
high-pressure pump, (b) longitudinal section of a
pump unit. 1. Locking ring, 2. Locating pin, 3. Pinion
rack, 4. High-pressure pump body, 5. Oil inlet line, 6.
Adjusting tube, 7. Retainer bolt, 8. Fuel to injector,
9. High-pressure hose connector, 10. High-pressure
valve spring, 11. Oil seal, 12. High pressure valve,
13. Copper gasket, 14. High-pressure valve seat, 15.
Cylinder, 16. Piston, 17. Pipe teeth, 18. Upper spring
stop plate, 19. Piston return spring, 20. Lower spring
stop plate, 21. Adjusting pad, 22. Roller head.

The high-pressure pump has another super-
precise pair: the high-pressure valve (12) and
valve seat (14). The screw (9) is screwed tightly
onto the adjusting pipe body (the adjusting pipe
is screwed tightly on the pump body) to press the
high-pressure valve seat tightly onto the cylinder
head (16) so the contact surface between the
valve seat (14) and the cylinder (16) consistently
tight. Thanks to the high-pressure valve spring
(10), the high-pressure valve (12) is pressed
tightly against the conical surface of the valve
seat, separating the space above the piston of

https://doi.org/10.52111/qnjs.2024.18310
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the pump unit from the high-pressure pipe. The
tooth rack (3) and tooth tube (17) are connected
to the piston tail, and the amount of fuel injection
supplied to the cycle is adjusted.

* Working principle (Figure 4):

Fuel suction process: When the cam drives, the
high-pressure pump rotates, and the roller rolls
on the cam profile. When the rocker roller goes
down, thanks to the force of the piston return
spring, the high-pressure valve closes thanks
to the high-pressure valve spring. At this time,
under the influence of the high-pressure pump
spring, it will push the piston (1) down, creating
a vacuum in the cylinder chamber (5). When
the piston opens the port (4), the fuel from the
fuel chamber (3) will be loaded into the cylinder
chamber until the piston is at its lowest position.

- N Wb ;s

Figure 4. Fuel suction and ejection stroke of the
high-pressure pump. 1. High-pressure pump piston,
2. Groove on piston, 3. Fuel compartment, 4.
Diaphragm port, 5. Cylinder cavity, 6. High pressure
valve, 7. Groove on high-pressure valve.

Fuel pushing process: When the rotating cam
pushes up the piston (1), the fuel is initially
pushed out through the hole (4). When the piston
covers the hole, the pressure fuel supply process
begins. In the high-pressure pump, the effect on
the high-pressure valve continues to increase
until the tension of the high-pressure valve
spring and residual pressure on the high-pressure
pipe are overcome, the high-pressure valve
opens, and fuel enters the high-pressure line to
the nozzle. The fuel supply process continues
until the piston's inclined groove opens the
port (4), ending the fuel supply. Leading to a
sudden decrease in fuel pressure in the pump

chamber, the high-pressure valve closes tightly

https://doi.org/10.52111/qn;js.2024.18310

on the valve seat (under the Influence of the
high-pressure valve spring and fuel pressure on
the high-pressure pipe). The fuel injection ends
even though the piston continues to move up.
Complete a fueling cycle and then repeat the
cycle as above. Due to the throttling phenomenon
of the port (4) and the compression phenomenon
of the fuel, the actual supply start and end times
are different from the geometric supply start and
end times.

Controlling the amount of fuel supplied: To
change the fuel provided to an engine's working
cycle, we move the rack, and the gear tube
rotates, making the piston rotate. This changes
the proper stroke of the pump piston.

* Structure of main details in high-pressure
pump:
- Ultra-precise piston and cylinder duo:
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Figure 5. Measurement parameters of the high-
pressure pump piston-cylinder duo. (a) Cylinder, (b)
piston, (c) Pump working parameters.

High-pressure pump pistons and cylinders
have precise geometric shapes and good wear
resistance. The manufacturing material is Crl5
steel, which has a stable microstructure and more
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stable geometric dimensions. The part is heat-
treated to meet the requirements of the friction
surfaces of the piston and cylinder pair having a
hardness not less than 58 HRC, and the end faces
having a hardness not less than 55 HRC.

Main parameters of piston and cylinder
(Figure 5):

+ The mass of the piston is m =15.7g.
+ Piston diameter: dp =7.996 mm.
+ Suction hole diameter: d, = 3.0 mm.

+ Spiral groove elevation angle (oblique):
o =32 degrees.

+ Spiral groove width (oblique): b= 2.5 mm.

+ Vertical chamfer width (vertical):
b, = 1.5 mm.

+ Piston front stroke: ht =2.8 mm.

- Piston return spring: responsible for
returning the pump piston during the cam
lowering stroke. Make sure the roller is always
in contact with the cam surface. The parameters
of the piston return spring are shown in Figure 6:

+ Mass of piston return spring: m,_= 16.6 g.
+ Number of twist steps: 5 steps.

+ Initial pressure of plunger piston spring:
F,=185N.

+ Hardness: k = 32000 N/m.

+ Damping degree: C = 10 N.s/m.

A
wwl wl
32

02,8

R —
= 8

016,7

Figure 6. Measurement parameters of piston return
spring.

- Roller jack:

022

il

24

Figure 7. Measurement parameters of the roller
handle. 1. Spring stop disc, 2. Adjusting pad, 3. Jack
body, 4. Roller shaft, 5. Roller.

Roller jack: This helps reduce friction
during contact between the roller and the
cam. Thanks to that, the cam can rotate easily,
avoiding cam jamming. It has a total mass
of 46.5 g (including the spring stop disc and
adjusting pad).

- Pair of high-pressure valves and high-pressure
valve seats: Each pump unit is equipped with
a high-pressure valve cluster, which has the
following tasks: Prevent gas from the engine
cylinder from entering the high-pressure pump
cylinder; Prevent fuel on the high-pressure
pipe from flowing back to the high-pressure
pump cylinder; Complete the fuel supply
process decisively, avoiding the phenomenon
of dropped spray.

The high-pressure valve pair is a precision
pair made of Crl5 alloy steel. The valve has a
hardness after heat treatment of about HRC
56+62, and the valve seat is HRC 60+64. The
valve and valve seat must be ground together.
The tightness of a high-pressure valve is usually
checked by using compressed air with a residual
pressure of 0.4 +0.5 MN/m?, immersing the
valve in a barrel of kerosene; there must be no
air bubbles. Main parameters of high-pressure
valve assembly (Figure 8):

+ Mass of high-pressure valve spring:

m_=19g.

1

+ Mass of high-pressure valve:m =2.2 g.

https://doi.org/10.52111/qnjs.2024.18310

Quy Nhon University Journal of Science, 2024, 18(3), 91-110 | 97



QUY NHON UNIVERSITY

I SCIENCE

+ Valve spring hardness: k;, = 13500 N/m.

+ Valve spring damping degree: C, =
5 N.s/m.

+ Valve seat hardness: k & = 20000000 N/m.

+ Valve seat damping degree: C, =50 N.s/m.
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Figure 8. Measurement parameters of the valve duo
and high-pressure valve seat. (a) High-pressure valve
assembly, (b) high-pressure valve spring, (c) High-
pressure valve seat, (d) High-pressure valve, (e)
High-pressure valve lift stroke A, 1. High-pressure
valve spring, 2. High pressure valve, 3. High-pressure
valve seat.

- High-pressure pump camshaft: The camshaft
is cast in one piece and designed with an almost
straight beveled cam face. As the cam lift
stroke increases, the piston's movement speed
increases, rapidly increasing fuel pressure.

Main parameters:

+ Base circle radius of cam: R = 17.04 mm.

+ Roller radius: r = 7.21 mm.

+ Effective width of roller: b_ = 8.5 mm.

Figure 9. High-pressure pump cam profile of Kubota
D1703-M-DI engine. 1. Roller shaft, 2. High-pressure
pump camshaft.

https://doi.org/10.52111/qn;js.2024.18310

b. High-pressure hose

A high-pressure steel pipe with high hardness is
used to carry high-pressure fuel from the high-
pressure pump to the high-pressure injector.

Figure 10. D1703-M-DI engine high-pressure hose.
Main parameters:
+ Overall length: 1 =325 mm.

+ High-pressure oil hole diameter:
d=1.5 mm.

+ High-pressure pipe wall thickness:
6=1.5 mm.

c. High-pressure nozzle

The Kubota D1703-M-DI engine uses a two-
stage nozzle. The nozzle head is arranged with
five spray holes with a diameter of about
0.2 mm distributed around with angles about
75 degrees apart to suit the Combustion chamber
structure to create the best mixture. This injector
will inject more fuel in the 2nd stage as the
fuel pressure increases. Using a 2-stage nozzle
reduces injection pressure to lift the injector,
thereby improving low-speed injection stability
and unloading capability. On the other hand,
because the initial amount of fuel injection is
small, it improves typing and smoothness of
motion.

Two springs (No. 8 and No. 12) and a push
rod (No. 14 and No. 13) are inside the nozzle.
In this two-gap stage, a gap between pin 14 and
pin 13 for fuel injection is called initial lift.

The initial lift, the tension of spring No. 8
(stage 1 fuel pressure), and the tension of spring
No. 12 (stage 2 fuel pressure) are adjusted by
replacing the corresponding adjusting pads.
Nominate them.
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Figure 11. Structure of D1703-M-DI engine nozzle.
1. Injector body, 2. Locking nut, 3. Body longitudinal
fuel pipe, 4. High-pressure hose connection, 5. Oil
return line connection, 6. Injector body, 7. Adjusting
gasket, 8. 1st stage spring, 9. Spring stop plate, 10.
Guide tube, 11. Adjusting pad, 12. 2nd stage spring,
13. Push rod, 14. Intermediate connecting pin, 15.
Setting base maximum injector lift stroke position,
16. Locating pin, 17. Nozzle body, 18. High-pressure
chamber, 19. Injector.

Stage 1 (Figure 12): When the fuel pressure
increases due to the operation of the high-
pressure pump and reaches about 190 KG/cm?,
it overcomes the tension of spring number 8§,
pushing the injector upward and causing injection
to begin. After pin 14 comes into contact with
spring base 12, the lift of the injector only changes
once the pressure increases to about 230 KG/cm?.

mm
05, Mamumlit
- Tnitial lift
7’
i i9 3 o
2
o7 150 730 G o’

Figure 12. Graph of nozzle operating pressure

evolution.

Stage 2 (Figure 12): when the fuel pressure
reaches about 230 KG/cm?, it overcomes the
tension of springs No. 8 and No. 12 and lifts
the injector higher. Once the injector contacts
the spacer (15), the needle lift will not change
anymore, even if the fuel pressure increases.

Therefore, when the engine is under a
light load, only a tiny amount of fuel is injected
at the low lift stage. On the other hand, under
heavy load, a small amount of fuel is injected
at the initial lift stage, and then large amounts
of fuel are injected at a more advanced stage.
The main parameters of the nozzle are shown in
Figures 13 and 14.

+ Injector mass: m . =2.9 g.

+ Spray hole length: /,,,, = 0,8 mm.

+ Nozzle cavity diameter at hole: = 1,0 mm.
+ Injector base angle: a,,, = 45°.

+ Diameter of injector spring wire 1:

d  =1.86 mm.
+ Average diameter of injector spring 1:
d, =4.52 mm.

+ Mass of injector spring 1: m,_ =3.0 g.
+ Diameter of injector spring wire 2:

d ,=2.05 mm.
+ Average diameter of injector spring 2:
d,=5.25 mm.

+ Mass of injector spring 2: m,_, =4.4 g.

+ Number of injector spring steps 1,2: 10
steps.

+ Push rod mass: m = 1.2 g.

+ Mass of connecting pin: m_ = 0.4 g.

2468
42,00

39.50

Les2s.

Figure 13. Parameters of the high-pressure nozzle of
Diesel engine D1703-M-DI. 1. st stage spray spring
stopper disc, 2. Guide tube, 3. 2nd stage spray spring
adjustment pad, 4. 2nd stage spray spring stopper disc,
5. Locating pin, 6. Fixing base maximum injector
lift stroke position, 7. Intermediate connection pin,
8. Push rod, 9. Stage 1 injection spring adjustment
pad, 10. Stage 1 injection spring, 11. Stage 2 injection
spring, 12. Nozzle body, 13. Injector.
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Figure 14. Basic parameters of the nozzle.
d. Combustion chamber shape

The Kubota D1703-M-DI Diesel engine uses
a unified combustion chamber and -shaped
piston top to create an airflow vortex, improving

the quality of mixture formation.
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Figure 15. Combustion chamber parameters of
Kubota D1703-M-DI Diesel engine. 1. Cylinder, 2.
Piston, 3. Dryer shaft, 4. Engine cover, 5. Nozzle.

Conclusion: The quality of fuel injection
in a Diesel engine (average fuel particle diameter,
spray beam taper angle, and spray beam
length) will determine the quality of mixture
formation and combustion. Many parameters
must be considered to achieve the best fuel
injection quality, such as fuel system structural
parameters, operating conditions, engine type,
fuel properties used, etc. We must research,
calculate, and choose to make these parameters

optimal.

2.2. Build a model and simulate the fuel
supply system of the Kubota D1703-M-DI
Diesel engine

2.2.1. Algorithm diagram

https://doi.org/10.52111/qn;js.2024.18310

Simulated object.

Structural analysis. A

| Build simulation models. |<—

Actual working Enter input Fundamentals of Characteristics
conditions of [~ data. object theory. of objects.
the object.
False g

True v

Export results:

- Relationship characteristics.
- Detailed set of parameters.
- Image.

Figure 16. Algorithm diagram of the simulation

program.

Based on simulation theory,* calculations on
Hydsim software, and the structure and actual
working conditions of the Kubota D1703-M-
DI Diesel engine fuel system, we have created
a schematic diagram of the Kubota D1703-M-
DI Diesel engine fuel supply system simulation
program (Figure 16).

2.2.2. Build simulation models

Figure 17. Main assemblies used for simulation.
1. High-pressure pump camshatft, 2. High-pressure pump

assembly, 3. High pressure pipe, 4. Injector nozzle.

The detailed assemblies used to simulate
the Kubota D1703-M-DI Diesel engine fuel
system (Figure 17) structurally combine three
main elements: a high-pressure pump, pipes, and

a nozzle.

The in-line high-pressure pump consists
of 3 pump groups. Because the pump groups
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have the same structure, the simulation is only
performed for one pump group.

The structure of a pump unit includes
Cam (4) (convex cam), which rotates thanks to
the drive shaft, causing the pump piston to move
up and down (piston plunger). The cam (4) has
a convex cam lobe, so the plunger piston goes
up and down once during its one revolution. The
cavity above the plunger piston is the pressure
chamber (chamber before the high-pressure
valve). Fuel from the low-pressure pump enters
the common intake chamber of the high-pressure
pump (Pressure margin), then through the fuel
inlet (inline inlet/overflow type) and into the
high-pressure pump chamber. Here, the plunger
piston compresses the fuel, which is pushed
through the high-pressure valve (which has a
pressure-reducing rim) to the chamber behind the
high-pressure valve (this chamber has residual
pressure). From here, high-pressure fuel follows
the high-pressure pipe to the high-pressure
injector (high-pressure oil chamber that lifts
the injector). Part of the fuel leaks through the
gap between the plunger piston and the cylinder
through the port to the fuel tank.

The high-pressure pipeline transports
high-pressure fuel from the high-pressure pump
to each injector. During the working process,
high-pressure pipes expand and contract.

High-pressure fuel from the high-pressure
pipe follows the pipeline along the nozzle body
to the high-pressure chamber in the nozzle body.
When the oil pressure applied to the injector
cone surface is enough to overcome the injector
spring tension (2 springs), the injector is lifted
(2 stages), and high-pressure fuel is injected
into the engine combustion chamber through the
spray hole on the nozzle head.

When the inclined groove on the pump
piston head (metering groove) opens the inlet/
pressure chamber in the high pump chamber
before the high-pressure valve suddenly
decreases, the high-pressure valve closes to
reduce the pressure and the return force. The
injector closes by pressing the high-pressure
valve spring, ending the fuel injection.

structural
characteristics of the fuel supply system of the
Kubota D1703-M-DI Diesel engine, we select the
corresponding elements in Hydsim software to
perform the simulation. Once the corresponding
elements have been identified, we create a block
model of the equipment in the fuel system.

From analyzing the

a. Create a high-pressure pump block model

Chamberbehindhigh‘ffifif,tff -
pressure valve (5). | 5| Chamber behind high
2="_| pressure valve (5).

|
High pressure valve (1‘2].

Chamber before high(
pressure valve (4).

3| High pressure valve (12).
| Chamber before high e alatant
compartment (10)

|
7, |
2 |

e
AN Intake/exhaust | | Intake/exhaust |
port (3). [pon(fﬂ. .J |

3

|
|

Common loading | B valve (4).

I
Piston plunger
Piston/cylinder (2). ‘ hf ﬁz phing
Common loading! -
’ ‘ compartment (10)
Return spring.
e ‘ By 1| camshaft (1).

Camshaft (1). e . |
s3> Mechanical element.

~— Hydraulic element.
r——  Special element.

a) b

Figure 18. Model of Kubota D1703-M-DI Diesel
engine high-pressure pump block. (a) Actual high-
pressure pump structure, (b) High-pressure pump
block model.

b. Create a high-pressure pipeline block model

| 1
- .

Figure 19. Kubota D1703-M-DI Diesel engine high-
pressure pipe block model.

c. Create a nozzle block model

A Return spring Injector Nozzle
U head

\Louglrudma.l tube Injector lift

: chamber
Return oil compartment

)

p————( Special element. LAk elemiBnt.

Nozzle head.
V4 Injector. SAC
Return oil 15 16
compartment. % !

v e

»—E53-» Mechanical element
»——— Hydraulic element. |_> ﬁ‘q

Longinudinal ube. || S e 1T
(N [ e
Figure 20. Model of Kubota D1703-M-DI Diesel

engine high-pressure injector block. (a) Fundamental
structure of high-pressure nozzle, (b) block model of

high-pressure nozzle.
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d. Create a block model of the combustion
chamber

Figure 21. Model of the combustion chamber block
of the Kubota D1703-M-DI Diesel engine.

2.2.3. Simulation model of Kubota D1703-M-DI
engine fuel system

|
\
1 | ~ o b
‘ r“'u+ 77177* \\\f ffffff
=F & High-pressure nozzle

\ |
I ﬁ’»—{ﬁ] &3+ Mechanical element
‘ : :
| 1 LT- —— Hydraulic element.
‘ EEQI &' | r—— Special element.
e |

High-pressure pump

Figure 22. Simulation model of D1703-M-DI Diesel
engine fuel system. 1. Camshaft (1), 2. Piston, 3.
Intake/exhaust port, 4. Chamber before the high-
pressure valve, 5. Chamber behind the high-pressure
valve, 6. High pressure pipe, 7. Injector lift chamber,
8. Return oil compartment, 9. Combustion chamber,
10. Joint loading compartment, 11. Longitudinal
tube, 12. High-pressure valve, 13,14. Leak element,
15. Injector, 16. Nozzle head SAC.

2.2.4. Analysis of simulation calculation mode of
Kubota D1703-M-DI engine fuel supply system

The parameters of the fuel equipment, combustion
chamber structure, charging mechanism, and
engine rotation are designed with the rated
working mode (revolution and rated load) to
ensure good atomization and mixture quality.
Changing the engine's working mode causes the
quality of the mist and mixture to deteriorate,
affecting the engine's economy, reliability, and
longevity.

https://doi.org/10.52111/qn;js.2024.18310

a. Rated load mode
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Figure 23. External speed characteristic graph of
D1703-M-DI engine.

The characteristic parameter for the rated
load mode at the rated number of revolutions
and rated load is (h_ : maximum helpful
stroke of the high-pressure pump piston). Based
on the external speed characteristic graph of
the D1703-M-DI engine (Figure 23) and the
technical specifications of the D1703-M-DI
engine, we can determine that the rated speed
of the engine is 2800 rpm, rated power
N= 22.7 kW. The remaining thing is to
determine the h, . The amount of fuel supplied
to a cylinder during a working cycle is calculated
according to the following formula:**

V=M&Lw%

X

3
1
120mip, ™ M

We have: 1=4;1=3;

The D1703-M-DI engine uses Diesel fuel,
soithasp =0.82 g/cm’.

Considering the speed of 2800 rpm, look
at the graph in Figure 23. We get Ne = 22.7 kW
and g =265 g/kW.h.

Substitute numbers into equation (1). We
getV_=29,111 mm’.

From there, we can calculate the proper
stroke of the pump piston: h, =~ 0.85 mm.
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b. Idle mode

Idle mode is when the engine operates stably
at the lowest speed without external load. The
no-load mode corresponds to the minor helpful
stroke of the high-pressure pump piston (h

& i, 1
) | i

imin) :

ot ;
Figure 24. Measuring fuel consumption of Kubota
D1703-M-DI engine.

Table 1. Engine fuel consumption without external
load.

Accelerator pedal
displacement (%) | 0 | 20 | 40 | 60 | 80 | 100

Amount of fuel
consumed in 60
seconds (g) 4 |85 (12| 16 | 27 |30.3

Number of
crankshaft
revolutions (rpm) [1000|1600|2000|2400|2650{2800

Proper stroke of
H. . pump piston

imin

(mm) 0.08(0.11]0.1210.13]0.21|0.22

From the results of measuring actual
fuel consumption (Figure 24) according to the
accelerator pedal stroke from 0% to 100% when
the engine is not carrying a load (Table 1), with
the electronic weighing device's error being
0.1 g, we can determine the minimum helpful stroke
of the high-pressure pump piston corresponding
to the no-load mode h, . = 0.08 mm.

c. Intermediate loading mode

Based on the actual working conditions of the
Kubota D1703-M-DI engine on the L3408VN
tractor, we see that when the tractor is operating
(plowing), the engine almost operates in the area
of 80 + 100% of the table travel. Step on the
accelerator (the tractor runs in gear 2) at a speed
of 1600 +~ 2000 [rpm]. However, when moving,

changing direction, etc, the engine usually runs
at an average load of 40 + 70% of the accelerator
pedal stroke, with a speed of about 2000 =+
2800 rpm. Therefore, determining the valuable
stroke in local load modes is very complicated.
For simplicity, we select the proper stroke at
representative local load modes for general
simulation as h, = 0.42 mm.

Conclusion: To see the influence of
structural parameters of the fuel system and
engine operating mode (speed, load, proper
stroke of high-pressure pump) on the quality of
the fuel supply process, we choose the simulation
mode corresponding to 4 engine crankshaft
speed positions: 1600, 2000, 2400, 2800 rpm.
We conduct a thin tissue for each simulated
speed position corresponding to the three high-
pressure pump rack positions: h. = 0.85 mm,
h, =0.42mm, and h . (Table 1).

2.2.5. Declare input data for elements

Declare input and output data for elements. I am
declaring boundary conditions and properties of
Diesel fuel. Run the simulation and export the
results.

3. ANALYSIS AND EVALUATION OF
THE INFLUENCE OF STRUCTURAL
PARAMETERS ON THE QUALITY OF
THE FUEL SUPPLY PROCESS OF THE
KUBOTA D1703-M-DI ENGINE

3.1. Influence of cam profile

The Kubota D1703-M-DI engine high-pressure
pump camshaft is designed with high rigidity
and a sudden growth profile (almost straight
bevel).
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o — —— . —r—
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profile lift (Cam_Profile) [m]

Figure 25. Lift graph of the cam profile.

https://doi.org/10.52111/qnjs.2024.18310

Quy Nhon University Journal of Science, 2024, 18(3), 91-110 [ 103



QUY NHON UNIVERSITY

IEYN-3l SCIENCE
31,5— ‘))
A 0.5 “rm_‘ﬂ_'_'*}»—__ Ah—

o 50 10'0 15'»0 2EI|D 250

Camshaft rotation angle [deg]
Figure 26. Graph of variation of pump piston
displacement speed.

The lift of the cam profile is in the x
direction (Figure 25). During the cam lift stroke,
the piston is raised at high speed (Figure 26), and
the fuel pressure in the pump chamber increases
rapidly, leading to high chamber pressure
behind the valve. Pressure, high-pressure pipe,
and injector lift chamber increase quickly
(Figure 27). When this pressure overcomes
injector spring tension, the injector lifts fuel into
the engine combustion chamber. The process of
injecting fuel into the combustion chamber lasts
until the inclined groove on the piston opens,
and the injection process ends.
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— Pump chamber.
- Valve chamber.
Needle lift chamber.
Spray nozzle.
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5e+007 J /‘\
4e+007 4 /h

3e+007 3

Pressure [Pa]

2e+007 4

1e+007 3

0] 1 "
] 10 20 30 40 50 80

Camshaft rotation angle [deg]
Figure 27. Graph of fuel pressure variation in the fuel

system.

Due to the cam profile's sudden growth,
the system's fuel pressure increases rapidly. The
compression stroke of the piston is turbulence.
This turbulence is in the form of a pressure
wave that propagates in the fuel line in an elastic
medium with the speed of sound; this speed
depends on the compressibility and fuel density.
The pressure wave reaches the injector later than
the fuel supply period. High injection pressure
and fuel compressibility not only cause a phase
shift in the fuel supply in the pump and nozzle
but also cause complex oscillatory motion of
the fuel layer in the high-pressure pipeline,
thus causing the circulation process to change.

https://doi.org/10.52111/qn;js.2024.18310

The movement of fuel through the injector
orifice sometimes has a pulsating character.
The source of pressure fluctuation interference
is the movement of pistons, injectors, and high-
pressure valves. Due to strong fluctuations in
fuel pressure, the injector can open repeatedly
after closing, causing a spray drop. Fuel injection
on the expansion line has poor atomization
quality due to low injection pressure. Drop
injection increases the combustion period on the
expansion path and reduces engine economy.

The fuel injection quality is quite good in
the delay and main injection stages due to the
high fuel injection pressure. The average fuel
particle diameter is small and uniform (Figure 28),
and the spray beam taper angle (Figure 29) and
the spray beam length (Figure 30) gradually
increase. However, in the free-flow phase
(fuel supply has stopped), the fuel injection
occurs thanks to the high-pressure pipeline's
fuel compression energy and elasticity. Hence,
the injection pressure gradually decreases, the
diameter of the average fuel particle increases,
and the spray beam taper angle and the spray
beam length decrease progressively.>?
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Figure 28. Graph of average fuel particle diameter

variation.
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Figure 29. Graph of fuel injection beam cone angle
variation.
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Figure 30. Graph of fuel injection beam length
variation.

In general, the quality of fuel injection at
the beginning and end of injection is not good,
negatively affecting the quality of mixture
formation and combustion, reducing engine
economy, and causing environmental pollution.
The quality of fuel injection is relatively good at
about 30 + 33° camshaft rotation angle (average
fuel particle diameter is small, and even spray
beam taper angle is significant, and beam length
is large enough. **
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Figure 31. Hertz stress variation graph.

Value and variation of contact stress
between roller file and convex cam during the
working process (Figure 31). The most significant
stress at the position where the plunger piston goes
up compresses the fuel with the highest pressure
at about 28-29° camshaft rotation angle (GQTC).
Then the stress decreases rapidly corresponding
to the moment the inclined groove on the piston
head opens the exhaust port; the fuel pressure
in the pump chamber suddenly decreases along
with the elasticity of the high-pressure pump
spring, causing the stress to fluctuate strongly,
then The stress gradually decreases when only
the elastic force of the spring remains, causing
the cam lowering stroke. >
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Figure 32. Graph of injector lift variation.

Due to the sudden lift of the cam, the
pressure in the injector lift chamber increases
rapidly. The hydraulic force acting on the needle
is vast, overcoming the tension of both injector
springs, so the injector is lifted to inject fuel
into the engine combustion chamber. When
fuel begins to be injected into the combustion
chamber, the pressure in the injector lift chamber
decreases slightly. Then, it continues to increase,
causing a slow increase in the injector lift stroke.
4000
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Figure 33. Graph of fuel injection flow variation.

The amount of fuel supplied in one
working cycle of a pumping unit corresponding
to the rated mode is about 26 mm? (Figure 34).
Due to low injection pressure, the flow is small
at the beginning and end of the injection process.
The most enormous injection flow is about
3.8 mm?3/degree (Figure 33). The injection time
is about 0.00119 s.
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Figure 34. Graph of fuel injection volume variation

in one cycle.
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3.2. Influence of D/hi ratio

To study the influence of the ratio between
piston diameter and proper stroke (D/h,) on fuel
injection quality under the same conditions.
Corresponding to the same amount of fuel
supplied for one engine cycle at rated load mode
is 29.11 mm?®. We choose the piston diameters to
be 8,7.5,7, 6.5, and 6 mm. We can calculate the
maximum beneficial journey: 0.85, 0.96, 1.11,
1.28, 1.50 mm.
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Figure 35. Influence of D/h, ratio on pump chamber
fuel pressure.

Simulation results show that the more
minor the piston diameter, the larger the piston's
helpful stroke, the lower the pressure in the
system, and the larger the fluctuations (Figure 35).
However, the pressure pulse at the end of the
injection process has a gradually decreasing
amplitude (Figure 36), meaning that the spray
drop phenomenon is slowly overcome. As the
pressure in the injector lift chamber decreases,
the hydraulic force acting on the injector
also decreases (Figure 37), so the injector lift
gradually decreases (Figure 38). Therefore, the
fuel circulation cross-section through the injector
base also decreases (Figure 39). As a result, the
fuel flow through the nozzle decreases (Figure 40),
prolongs the fuel injection completion time, and
negatively affects the mixture formation and
combustion process. >3
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Figure 36. Influence of D/h, ratio on injector lift
chamber pressure.
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Figure 37. Influence of D/h, ratio on the hydraulic
force acting on the injector.
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Figure 38. Influence of D/h, ratio on injector lift.

As the piston diameter becomes smaller,
the proper stroke of the piston becomes larger. We
can see that the injection start time is gradually
delayed, the average particle diameter gradually
increases (Figure 41), the spray beam taper angle
decreases (Figure 42), and the direction of the
spray beam decreases (Figure 42). The spray
beam length gradually decreases (Figure 43),
and the injection end time is slowly delayed.
The average fuel particle diameter gradually
decreases, the spray beam taper angle decreases
(Figure 42), and the spray beam length gradually
increases (Figure 43).
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Figure 39. Influence of D/h, ratio on the flow cross-
section to the injector.
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Figure 40. Influence of D/h, ratio on fuel injection flow.
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Figure 41. Influence of D/h, ratio on average fuel
particle diameter.
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Figure 42. Influence of D/h, ratio on fuel injection
beam taper angle.
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Figure 43. Influence of D/h, ratio on fuel injection
beam length.

Conclusion: When changing the D/h,
ratio, we see a massive change in the system's
fuel injection quality. With the same amount
of fuel supplied to a cycle, the more we reduce
the piston diameter, the more helpful stroke the
pump piston will have, so the injection time
will be longer. Due to the decrease in piston
diameter, the instantancous compressed fuel
flow through the high-pressure valve decreases,
and the pressure in the system decreases. The
force lifting the injector decreases, the fuel flow
through the injector decreases, and the fuel flow
leaking through the injector decreases. The
average fuel particle diameter is generally small
and uniform throughout the injection process.
The spray beam taper angle and spray length are
reduced but not significantly.

3.3. Influence of nozzle diameter

When other conditions are equal, we change the
nozzle hole diameter by 0.18, 0.22, 0.25 mm, and
0.30 mm and simulate rated load mode. Consider
the impact on fuel injection quality compared to
when the nozzle hole diameter is 0.20 mm. The
results show that when the nozzle hole diameter
is smaller (0.18 mm), the fuel flow through the
nozzle is more minimum (Figure 47), and the
spray beam quality is uneven. In the delay and
main injection stages, the average fuel particle
diameter is the smallest (0.1+0.13) um. Still, in
the free injection stage at the end of the injection
process, the average fuel particle diameter is
0.38 um (Figure 44), the spray beam taper angle
(Figure 45) and the spray beam length are too
small (Figure 46), and when spraying starts at
the nozzle mouth, mist often condenses into mist,
and at the end of the spraying process. There is
a phenomenon of spray drop due to pressure
pulsation in the system. Adversely affects the
quality of the mixture formation and combustion
process, reduces engine economy, and causes
environmental pollution.
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Figure 44. Influence of nozzle diameter on average

fuel particle diameter.
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Figure 45. Influence of nozzle diameter on fuel

injection beam taper angle.

https://doi.org/10.52111/qnjs.2024.18310

Quy Nhon University Journal of Science, 2024, 18(3), 91-110 [ 107



QUY NHON UNIVERSITY

I SCIENCE

002
. 00183
0016 3
0014
00124

0013
0.008 §
0.005 4
0.004 3
0002

tion beam [m]

Penetration of fuel

injec

T
a0 50 80
Camshaft rotation angle [deg]

Figure 46. Influence of nozzle diameter on fuel
injection beam length.

As the nozzle hole diameter grows, the
fuel flow through the nozzle increases (Figure
47), so the fuel injection pressure gradually
decreases (Figure 48). This results in the average
fuel particle diameter increasing progressively
(Figure 44), the spray beam taper angle gradually
increasing (Figure 45), the spray beam length
increasing progressively (Figure 46), and the
average final fuel particle diameter being too
high. The spraying process gradually decreases.
At the same time, it overcomes the phenomenon
of creating pressure pulses in the system, avoiding
the phenomenon of spray drops. However, the
diameter of the nozzle hole must be manageable,
leading to the average diameter of the fuel
particles being too large, rough, complex to tear
apart, and evaporation slow, leading to poor
mixture formation quality. >
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Figure 47. Influence of nozzle diameter on fuel
injection flow.
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Figure 48. Influence of injection hole diameter on
injector lift chamber pressure.
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Conclusion: When increasing the nozzle
diameter from 0.20 mm to 0.22, 0.25, and
0.30 mm, the spray circulation area will increase,
the amount of fuel injected will increase, and the
fuel flow will increase significantly. Therefore,
the oil pressure in the injector lift chamber
decreases, increasing the average fuel particle
diameter, spray taper angle, and spray length
(poor tearing level). In this case, we see a
decrease in fuel flow leaking through the injector.

When the nozzle diameter is reduced from
0.20 mm to 0.18 mm, the spray circulation cross-
section will be reduced, and the amount of fuel
injected and the fuel injection flow will decrease.
Therefore, the oil pressure in the injector lift
chamber increases, and the injector opens large,
decreasing the average fuel particle diameter,
spray taper angle, and spray length (due to too
strong tearing). In this case, we see an increase
in fuel leaking through the injector. However, in
this case, pressure pulses appear, causing spray
drops that negatively affect the quality of the
mixture formation process.”®

3.4. Influence of nozzle length

Increasing the nozzle length from 0.8 mm to
1.0 mm decreases the spray cone angle and vice
versa. Reducing the nozzle length from 0.8 mm
to 0.6 mm decreases the beam taper angle and
the spray increases.
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Figure 49. Influence of nozzle length on spray beam

taper angle.
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3.5. Influence of nozzle spring stiffness
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Figure 50. Influence of injector spring stiffness on
average fuel particle diameter. (a) k,=200000 N/m and
k,=300000 N/m, (b) k,=225000 N/m and k,=325000
N/m, (c) k,=250000 N/m and k,=350000 N/m,
(d) k,=275000 N/m and k,=375000 N/m.

It remains constant when the stiftness of
the two injector springs is changed with other
conditions. We can see that the greater the
injector spring stiffness, the better the fuel
injection quality the smaller and more uniform
the average diameter of fuel particles at the
end of the injection process. However, the
hardness of the two injector springs must be
manageable, which will affect the injector lift
and fuel circulation cross-section through the
injector base. >

4. CONCLUSIONS

Through the process of researching and applying
HydSim software to simulate, analyze, and
evaluate the influence of structural parameters
on the quality of the fuel supply process of the
D1703-M-DI engine, we see that Hydsim is
a software used to simulate and calculate the
fuel system is quite powerful. The simulation
parameters achieved are close to the actual
parameters of the engine, and the simulation
results accurately reflect the influence of
structural parameters, operating conditions, and
combustion chamber pressure on fuel injection
quality.

During the implementation of the project,
with many runs and tests, the desired analytical
results were achieved. In general, the quality of
the fuel injection beam is satisfactory. Still, there
are some limitations, such as at high speeds and

large loads, the average diameter of fuel particles
at the end of the extensive injection process,
there is a phenomenon of spray drop; the fuel
injection beam taper angle is small, the spray
penetration is slight (L/S<1.05). To improve fuel
injection quality, we can proceed by:

- Because the cam profile is not reasonable,
the pressure in the system increases suddenly and
fluctuates strongly. When the engine operates
at high speed and high load at the end of the
injection process, because the pressure in the
system is still significant and fluctuates strongly,
the injector does not close tightly, leading to the
injection falling.

- The diameter and helpful stroke of the
pump piston are not suitable. Combined with
the sudden growth of the cam profile and high
operating speed, the time for fuel injection into
the combustion chamber needs to be longer.
The free flow injection period is extended. The
pressure drops sharply, so the average diameter
of fuel particles at this stage is extensive,
negatively affecting the quality of mixture
formation and combustion. According to the
simulation results of Section 3.2, the best spray
quality is selected with a piston diameter of
7 mm and a piston stroke of 1.11 mm.

- The nozzle hole diameter is small, so
when the engine operates at high speed and
load, the injector opens repeatedly, causing
spray to drop or spray on the expansion line. The
simulation results in Section 3.3 show that the
best spray hole diameter is from 0.22 + 0.25 mm.

- The length of the spray hole only
affects the spray beam taper angle. Due to the
considerable design nozzle length, the spray
beam taper angle is slight, and the ability to
fill the combustion chamber space could be
improved. Therefore, the mixing quality could
be better. The larger the spray beam, the better.
According to the simulation results of Section
3.4, we need to reduce the spray hole length to
0.6 mm.
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- The injector hardness is not suitable and
small, causing the injector to close slowly and not
decisively, leading to dropped injection, spraying
on the expansion path, and the average size of
fuel particles at the end of the injection process is
significant. According to the simulation results in
Section 3.5, it is necessary to increase the injector
hardness (k, =275000 N/m and k, = 375000 N/m).

In addition, other structural parameters of
the fuel system, such as pump spring stiffness,
high-pressure pipe length, the viscosity of
fuel used, etc., and the influence of operating
parameters such as speed, the degree of the high-
pressure pump camshaft, the proper stroke of the
high-pressure pump (h,)), and the compressed
air pressure in the combustion chamber at the
time of fuel injection also need to be thoroughly
studied as a whole. From there, we propose
solutions to improve this engine fuel system to
become more complete and more suitable for
operating conditions in our country.
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